Experimental Measurements of the Dynamic Electric Field Topology Associated with Magnetized RF Sheaths

Elijah H. Martin1,2
Steve Shannon1 – John Caughman2
Ralph Isler2 – Chris Klepper2

1Department of Nuclear Engineering, NCSU, Raleigh NC ----- 2Fusion Energy Division, ORNL, Oak Ridge TN
Outline

- **Introduction**
 - RF Sheaths – Ion Cyclotron Range of Frequency Antenna
 - Collisionless Heating
 - Optical Emission Spectroscopy and the *dynamic* Stark effect

- **DStarVE – Dynamic Stark Verification Experiment**
 - Experimental Setup
 - Collection Optics and Spectroscopic System

- **Initial DStarVE Results**
 - Time Averaged Optical Emission Spectroscopy – H$_2$
 - Phase Resolved Optical Emission Spectroscopy – H$_2$

- **Conclusions and Future Work**
Outline

- Introduction
 - RF Sheaths – Ion Cyclotron Range of Frequency Antenna
 - Collisionless Heating
 - Optical Emission Spectroscopy and the dynamic Stark effect

- DStarVE – Dynamic Stark Verification Experiment
 - Experimental Setup
 - Collection Optics and Spectroscopic System

- Initial DStarVE Results
 - Time Averaged Optical Emission Spectroscopy – H₂
 - Phase Resolved Optical Emission Spectroscopy – H₂

- Conclusions and Future Work
RF Sheaths – ICRF Antenna and Collisionless Heating

- The underlying motivation for this research is to quantify the effect of the magnetized RF sheath on the operation of ICRF antenna system implemented on a thermonuclear reactor.

- ICRF antenna systems are a critical component!

- RF sheaths are formed on the faraday screen/antenna box.

- Power is absorbed in the RF sheath/presheath through collisional and collisionless processes – undesirable effects on ICRF antenna operation.

- Measurement of electric field topology and dynamic will aid the development of the theory utilized to model ICRF antenna near field – plasma interactions.

- What is the effect of the electric field topology and dynamic on the heating/power absorption mechanism associated with the RF sheath.

 Kinetic Effect – Fermi Acceleration
 – Two Stream Instability

 Fluid Effect – Compression/Rarefaction of Sheath
 – Ohmic

Outline

- Introduction
 - RF Sheaths – Ion Cyclotron Range of Frequency Antenna
 - Collisionless Heating
 - Optical Emission Spectroscopy and the *dynamic* Stark effect

- DStarVE – Dynamic Stark Verification Experiment
 - Experimental Setup
 - Collection Optics and Spectroscopic System

- Initial DStarVE Results
 - Time Averaged Optical Emission Spectroscopy – H₂
 - Phase Resolved Optical Emission Spectroscopy – H₂

- Conclusions and Future Work
OES and the Dynamic Stark Effect

- The electric field associated with the RF sheath is experimentally measured by utilizing time averaged and phase resolved optical emission spectroscopy.

- The local electric and magnetic field parameters are determined from the measured line profile of a properly chosen electronic transition.

Balmer series transitions

- The electric field associated with an RF sheath can be written in terms of a Fourier series:

\[\overline{E}(t) = \overline{E}_o + \sum_{n=1}^{\infty} \overline{E}_n \cos(n \omega t + \phi_n) \]

- The line profile can be calculated utilizing one of two methods:

 Floquet Method \[\Delta \approx \frac{A_{ki}}{\omega} \ll 1 \]

 Quasi-static Method \[\Delta \approx \frac{A_{ki}}{\omega} \gg 1 \]

- The results to follow were obtained assuming the quasi-static method is valid.

- The dynamic Stark effect is a multi-photon process. Photons associated with the atomic transitions are emitted/absorbed with photons associated with the oscillating electric field!
Dynamic Stark Effect – Quasi-static Method

- In the limit $\Delta \gg 1$ the quantum states respond instantaneously to the electric field and the quasi-static method can be utilized to line profile.

$$i\hbar \frac{\partial \Phi}{\partial t} = H^* \Phi \quad H^* = H^0 + \frac{\mu_B}{\hbar} \mathbf{B} \cdot [\mathbf{J} + \mathbf{S}] + e\mathbf{E}_i \cdot \mathbf{r}$$

$$\bar{E}_i = \bar{E}_0 + \sum_{n=1}^{NH} E_n \cos(n \omega t_i + \phi_n) \quad t_i \in [0, \tau]$$
Outline

- Introduction
 - RF Sheaths – Ion Cyclotron Range of Frequency Antenna
 - Collisionless Heating
 - Optical Emission Spectroscopy and the dynamic Stark effect

- DStarVE – Dynamic Stark Verification Experiment
 - Experimental Setup
 - Collection Optics and Spectroscopic System

- Initial DStarVE Results
 - Time Averaged Optical Emission Spectroscopy – H$_2$
 - Phase Resolved Optical Emission Spectroscopy – H$_2$

- Conclusions and Future Work
DStarVE Experimental Setup

RF Biased Electrode
- 13.56 MHz -

RF Compensated Langmuir Probe
2.45 GHz Directional Couplers
RF Directional Couplers

Capacitive and Inductive Probe
DC Bias Probe
Outline

- Introduction
 - RF Sheaths – Ion Cyclotron Range of Frequency Antenna
 - Collisionless Heating
 - Optical Emission Spectroscopy and the dynamic Stark effect

- DStarVE – Dynamic Stark Verification Experiment
 - Experimental Setup
 - Collection Optics and Spectroscopic System

- Initial DStarVE Results
 - Time Averaged Optical Emission Spectroscopy – H₂
 - Phase Resolved Optical Emission Spectroscopy – H₂

- Conclusions and Future Work
Collection Optics and Spectroscopic System

Subtraction of a ‘unperturbed’ line profile can lead to significant errors when extracting electric field parameters.

No Unperturbed Emission Collected

Optics aligned with dual slit assembly

- Mechanical Slit
- GT Polarizer
- Mechanical Slit

Spectrometer
- 0.5 m Czerny - Turner
- triple turret grating

Camera
- PI-MAXIII Intensified CCD
- 3.68 ns gate width
- 1 MHz repetition rate

0.03 nm FWHM Gaussian instrument function
Outline

- **Introduction**
 - RF Sheaths – Ion Cyclotron Range of Frequency Antenna
 - Collisionless Heating
 - Optical Emission Spectroscopy and the dynamic Stark effect

- **DStarVE – Dynamic Stark Verification Experiment**
 - Experimental Setup
 - Collection Optics and Spectroscopic System

- **Initial DStarVE Results**
 - Time Averaged Optical Emission Spectroscopy – H₂
 - Phase Resolved Optical Emission Spectroscopy – H₂

- **Conclusions and Future Work**
In order to accurately extract the electric field parameters from the line profile a robust fitting algorithm is required.

Due to the large number of free parameters the computational time and accuracy of the fit will be increased by utilizing multiple constraints:

- Line profiles of multiple transitions: Hα, Hβ
- Known polarizations: σ and π
- Subtraction of impurity transitions

A simple fitting routine for the Hα line profile is currently utilized while the robust algorithm is being developed.

\[\vec{E}(t) = E_o \hat{z} + E_o \cos(\omega t) \hat{\omega} \]

\[\vec{B} = B_o \hat{z} = 0.15 \ T \]
Time Averaged OES – Electric Field Calculation

- Utilizing the FWHM of the Gaussian fit to the simulated σ and π profiles the following relationships are found.

\[
E_o = a\left[\sigma_{FWHM}^2 - \pi_{FWHM}^2\right]^{1/2} + b
\]

\[
\pi_{FWHM} = aE_o^3 + bE_o^2 + cE_o + d
\]

\[
\sigma_{FWHM} = aE_o + b
\]

- The above method will allow for the neutral temperature to be determined.

- σ and π profiles should give $kT_n \sim 1$ eV if excitation path is through Franck-Condon dissociation.

Method Requirements

- σ and π profiles must have same kT_n

- Gaussian line profile
Time Averaged OES – RF Sheath Parameters

- The electric field is calculated from the σ_{FWHM} and π_{FWHM} associated with the ‘thermal’ group of atoms – **method requirements are met**.

- The sheath voltage obtained by integrating the experimentally determined electric field is in good agreement with the electrical probe measurements.

OES

- Electrode DC Voltage: $-2.38 + V_{\text{PDC}}$ kV
- Electrode RF Voltage: $2.38 + V_{\text{PRF}}$ kV
- Sheath Thickness: 1.13 cm

Electrical Probe

- Sheath Voltage: -2.55 kV
- Sheath Thickness: 1.13 cm
Time Averaged OES – H\textsubscript{\beta} Line Profile

- The H\textsubscript{\beta} transition is more sensitive to the electric field – analysis will yield accurate electric field time dependence – will require robust fitting algorithm.

- Two temperature distribution is not observed in the H\textsubscript{\beta}.
Outline

- Introduction
 - RF Sheaths – Ion Cyclotron Range of Frequency Antenna
 - Collisionless Heating
 - Optical Emission Spectroscopy and the dynamic Stark effect

- DStarVE – Dynamic Stark Verification Experiment
 - Experimental Setup
 - Collection Optics and Spectroscopic System

- Initial DStarVE Results
 - Time Averaged Optical Emission Spectroscopy – H₂
 - Phase Resolved Optical Emission Spectroscopy – H₂

- Conclusions and Future Work
Phase Resolved OES

- Phase resolved measurements of total emission were conducted to gain insight on the RF sheath parameters presented above.

- Phase resolved images are very similar to those obtained by T. Gans et al.[4] and D. O’Connell et al.[5].

60 temporal points – 0 to 73.8 ns
5 ns resolution
16 spatial points – 0.9 to 8.5 mm
0.75 mm resolution

- Total emission is dominated by the H$_\alpha$ transition for our system bandwidth of 350 to 800 nm.

Phase Resolved OES – Impact on Electric Field Calculations

- The time dependence of the emission intensity **must** be taken into account in the calculation of the line profile.

- Constant emission intensity assumption will underestimate the electric field parameters.

- An electron-electron two-stream instability\(^\text{[6]}\) seems to be present in the PROES data and the discharge current – driven at 163 MHz.

The electron beam generated due to the sheath expansion correlates with the calculated electric field.

The dramatic change in the line profile of the H$_\beta$ transition measured at 1 and 2 mm may indicate field reversal.

Emission from the ‘fast’ group of neutrals has a 40 per cent higher peaking factor than the ‘thermal’ group.
Outline

- Introduction
 - RF Sheaths – Ion Cyclotron Range of Frequency Antenna
 - Collisionless Heating
 - Optical Emission Spectroscopy and the dynamic Stark effect

- DStarVE – Dynamic Stark Verification Experiment
 - Experimental Setup
 - Collection Optics and Spectroscopic System

- Initial DStarVE Results
 - Time Averaged Optical Emission Spectroscopy – H_2
 - Phase Resolved Optical Emission Spectroscopy – H_2

- Conclusions and Future Work
Conclusions and Future Work

- An initial estimate of the dynamic electric field topology associated with a magnetized capacitively coupled RF sheath has been successfully measured based on the H\textsubscript{\alpha} line profile.
 - The electric field strength is approximately a linear function of space for the given model.

 \[
 \vec{E}(t) = E_o \hat{z} + E_o \cos(\omega t) \hat{z} \quad \rightarrow \quad E_o \in [3.2, 1.1] kV/cm \quad z \in [1, 8] mm
 \]

- Phase resolved optical emission spectroscopy reveals a strong time dependence in the total emission intensity in the sheath.
 - In order to accurately determine the electric field parameters in the RF sheath this must be taken into account in the line profile calculations: **Floquet Method – Quasi-static Method**.

- Determine if the quasi-static method approximates the atomic physics well in the RF range of frequencies for the Balmer series transitions[7].

- Develop robust line fitting algorithm based on the following constraints:
 - Two line profiles: H\textsubscript{\alpha} H\textsubscript{\beta}
 - Two polarizations: \(\sigma\ \pi\)
 - Time dependence of transition intensity

EXPERIMENTS!!!

[7] Calculation of RF Field Characteristics using Non-perturbative Optical Diagnostics with a Generalized Dynamic Stark Effect Model – **IP3N-48 Wendesday 13:00-15:00 CC12 A-D**
Acknowledgments

I would like to thank Steve Shannon and John Caughman – for their excellent mentoring and teachings of RF and experimental plasma physics.

I would like to thank Ralph Isler – his expertise and teachings in the field of plasma spectroscopy have been priceless.

I would like to thank Chris Klepper – for many useful discussions and suggestions.

Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under contract DE-AC05-00OR22725
QUESTIONS
Dynamic Stark Effect – Floquet Method

In the limit $\Delta \ll 1$ the calculation of the line profile requires a solution of the following Schrödinger equation:

$$i\hbar \frac{\partial \Phi}{\partial t} = H^* \Phi + \sum_{n=1}^{NH} H_{n}^{RF} \left[e^{i(n\omega t + \phi_n)} + e^{-i(n\omega t + \phi_n)} \right] \Phi$$

$$H^* = H^o + \frac{\mu_B}{\hbar} B \cdot [\vec{J} + \vec{S}] + e\overline{E}_o \cdot \overline{r} \quad H_{n}^{RF} = \frac{e\overline{E}_n \cdot \overline{r}}{2}$$

$$\overline{E}(t) = \overline{E}_o + \sum_{n=1}^{NH} \overline{E}_n \cos(n\omega t + \phi_n)$$

Utilizing the Floquet theorem[2] and a Fourier series expansion the time dependent Schrödinger equation can be reduced to an eigenvalue problem – the quantum states are stationary[3].

Computational intensive for the RF range of frequencies.

Convergence to quasi-static method in RF range of frequencies due to finite resolution of spectroscopic system??? --- Currently under investigation.

[2] C. M. Bender and S. A. Orszag, \textit{Advanced Mathematical Methods for Scientists and Engineers – Asymptotic Methods and Perturbation Theory}, Springer-Verlag NY Inc. 1999

[3] W. W. Hicks, R. A. Hess, and W. S. Cooper, Physical Rev. A 5 (1972) 490
Dynamic Stark Effect – Quasi-static Method

- In the limit $\Delta \gg 1$ the quantum states respond instantaneously to the electric field and the quasi-static method can be utilized to line profile.

$$i\hbar \frac{\partial \Phi}{\partial t} = H^* \Phi \quad H^* = H^o + \frac{\mu_B}{\hbar} \overline{B} \cdot [\overline{J} + \overline{S}] + e \overline{E}_i \cdot \overline{r}$$

- In the RF range of frequencies the satellite structure saturates the line profile – due to finite resolution of spectroscopic system – for the following conditions:

$$\overline{E}_i = \overline{E}_o + \sum_{n=1}^{NH} \overline{E}_n \cos(n\omega t_i + \phi_n) \quad t_i \in [0, \tau]$$

- The results to follow were obtained assuming the quasi-static method is valid for the Balmer series transitions in the RF range of frequencies.

$$FWHM \equiv 0.025 \text{ nm}$$

$\sim 5 \text{ GHz}$
The Dynamic Stark Effect – Degenerate States

Consider a one electron atom in the presence of a perturbative monochromatic electric field, the time dependent Schrödinger equation takes the form:

\[i\hbar \frac{\partial \Psi}{\partial t} = H^0 \Psi + e\mathbf{r} \cdot \mathbf{E}_{RF} \cos(\omega t) \Psi \]

Ignoring the ‘fine-structure’ operators in the unperturbed Hamiltonian Blochinzew\(^7\) arrived at the first order correct result utilizing time dependent degenerate perturbation theory.

\[
\left\langle I_{nn}(\nu^*) \right\rangle = \sum_{\mathbf{m}} \left| \langle \phi_{n n_n n_m m} | \mathbf{E} \cdot \mathbf{r} | \phi_{n'n_n'n_m'm} \rangle \right|^2 \sum_{p=-\infty}^{\infty} J^2_p(\alpha X) \delta(\nu^* - \nu_{nn} - p\nu) \quad \text{Time Averaged Line Profile}
\]

\[
X = n(n_1 - n_2) - n'(n'_1 - n'_2)
\]

\[
\alpha = \frac{3\hbar E_{RF}}{2m_e e c \omega}
\]

\[
\nu = \frac{\omega}{2\pi}
\]

The Dynamic Stark Effect – Non-Degenerate States

- Consider a one electron atom in the presence of a static electric field, static magnetic field, and monochromatic electric field. The time dependent Schrödinger equation takes the form:

\[
i\hbar \frac{\partial \Phi}{\partial t} = H^* \Phi + H^{RF} \left[e^{i\omega t} + e^{-i\omega t} \right] \Phi
\]

- Floquets theorem\[8\] asserts that a differential equation with periodic coefficients will have a solution of the form:

\[
\Phi(t) = T(t)e^{-i\lambda t}
\]

- We expand the periodic coefficients, \(\tau(t) \), in a Fourier series:

\[
\Phi_k(t) = \sum_{s=-\infty}^{\infty} \sum_{j=1}^{N} c_{kj}^s \Psi_j e^{-i(\lambda_k + s\omega)t}
\]

- We choose the coupled basis set to work within and expand \(T(t) \):

\[
\Phi_k(t) = \sum_{j=1}^{N} \tau(t)_{kj} \Psi_j e^{-i\lambda_k t}
\]

- Redefine \(\lambda_k \):

\[
\Phi_k(t) = \sum_{s=-\infty}^{\infty} \sum_{j=1}^{N} c_{kj}^s \Psi_j e^{-i\left(\frac{E_k + s\omega}{\hbar}\right)t}
\]

The Dynamic Stark Effect – Non-Degenerate States

Substituting this result into the Schrödinger equation we perform the following integral using the orthonormality of our basis set:

\[\langle \Psi_l \mid i\hbar \frac{\partial \Phi_k}{\partial t} \rangle = \langle \Psi_l \mid H^* \Phi_k \rangle + \langle \Psi_l \mid H^{RF} e^{i\omega t} \Phi_k \rangle + \langle \Psi_l \mid H^{RF} e^{-i\omega t} \Phi_k \rangle \]

The resulting equation must be satisfied at all time thus we can equate equal powers of:

\[e^{-i\omega t} \]

We arrive at an infinite set of algebraic equations:

\[
\left(E_k + s\hbar \omega \right) c_{kl}^s = \sum_{j=1}^{N} c_{kj}^{s-1} W_{lj}^{RF} + \sum_{j=1}^{N} c_{kj}^{s} W_{lj}^{*} + \sum_{j=1}^{N} c_{kj}^{s+1} W_{lj}^{RF} \]

\[k = 1..N \]
\[l = 1..N \]
\[s = \infty..-\infty \]

In order to solve this system of algebraic equations we truncate the set such that:

\[c_{kj}^s = 0 \]

\[|s| > s_m \]

The truncated set of algebraic equations can be written in matrix form:
The Dynamic Stark Effect – Non-Degenerate States

- Substituting this result into the Schrödinger equation we perform the following integral using the orthonormality of our basis set:

\[
\begin{bmatrix}
W^* + \text{i} S \ h \omega \\
W^{RF} \\
0 \\
0
\end{bmatrix}
\begin{bmatrix}
W^* + \text{i} (s - 1) \ h \omega \\
W^{RF} \\
0 \\
0
\end{bmatrix}
\begin{bmatrix}
0 \\
0 \\
W^{RF} \\
W^* - \text{i} S \ h \omega
\end{bmatrix}
\begin{bmatrix}
\vec{c}^{-s_m} \\
\vec{c}^{-s_m+1} \\
\vec{c}^{-s_m} \\
\vec{c}^{-s_m+1}
\end{bmatrix}
- \vec{E}_k
= 0
\]

\[
W = \begin{bmatrix}
W_{11}^* & \cdots & W_{1N}^* \\
\vdots & \ddots & \vdots \\
W_{N1}^* & \cdots & W_{NN}^*
\end{bmatrix}
\]

\[
W^{RF} = \begin{bmatrix}
W_{11}^{RF} & \cdots & W_{1N}^{RF} \\
\vdots & \ddots & \vdots \\
W_{N1}^{RF} & \cdots & W_{NN}^{RF}
\end{bmatrix}
\]

- The \textbf{W-matrices are} \textbf{N} x \textbf{N} – \textbf{N} is the number of basis states with a given \textbf{principal quantum number}, \textbf{n}.

- The complete solution to the Schrödinger equation for a given \textbf{n} must have \textbf{N} basis states.
The Dynamic Stark Effect – Time Averaged Line Profile

The time averaged line profile for spontaneous emission is given by:

\[
\langle I_{kk}(v^*) \rangle \propto \sum_{s_1=-s_m}^{s_m} \sum_{s_2=-s_m}^{s_m} \delta\left(v^* - \frac{(E_k - E_{l1})}{h} - (s_2 - s_1)\nu\right) \sum_{s_1=-s_m}^{s_m} \sum_{s_2=-s_m}^{s_m} \delta(s_2 - s_1 - s_2 + s_1) \left(\sum_{i=1}^{N_{nf}} c_{li}^s \Psi_i \right) \left(\sum_{j=1}^{N_{ni}} c_{kj}^{s_j} \Psi_j \right)^* \left(\mathbf{E} \cdot \mathbf{F} \right) \left(\sum_{j=1}^{N_{ni}} c_{kj}^{s_j} \Psi_j \right) \]

- \(n_f \) – principal quantum number of final state
- \(n_i \) – principal quantum number of initial state
- \(N_{nf} \) – number of basis states with principal quantum number \(m \)
- \(N_{ni} \) – number of basis states with principal quantum number \(n \)

To calculate the line profile for an RF electric field in the range of 50 MHz might require 500 to 1000 Floquet blocks \((2s_m+1)!\) For the \(H_\beta \) transition:

- \(n_f = 2 \quad N_{nf} = 8 \quad \rightarrow \quad \text{Floquet matrix is 8000 x 8000} \)
- \(n_i = 4 \quad N_{ni} = 32 \quad \rightarrow \quad \text{Floquet matrix is 32000 x 32000} \)
Dynamic Stark Effect – Code Validation

- In order to validate the code the results of the Floquet and Blochinzew analyses must be equivalent when considering degenerate states.

\[\overline{E(t)} = E_o \hat{z} + E_1 \cos(\omega t) \hat{z} + E_2 \cos(2\omega t + \phi_2) \hat{z} \]

\[
E_o = 2 \text{ kV/cm} \quad \omega / 2\pi = 20 \text{ GHz} \\
E_1 = 4 \text{ kV/cm} \quad \phi_2 = \pi / 6 \\
E_2 = 2 \text{ kV/cm}
\]

- The Floquet and Blochinzew analyses agree for all valid field configurations!
Optically Resolving the RF Sheath – Alignment

- In order to achieve the spatial resolution set by the collection optics the field of view must be precisely aligned parallel to the electrode surface.

- A 2D ray trace program was utilized to determine machining tolerances and simulate the alignment process.