MA 532 Supplementary Problems 8 (corrected)

December 4, 2003

1. (Based on exercise 1.94.) Consider the differential equation

\[\begin{align*}
\dot{x} &= x^2 + y^2 - 1, \\
\dot{y} &= 5(xy - 1).
\end{align*} \tag{1} \tag{2} \]

(a) Show that there are no equilibria.
(b) Use the method of nullclines to draw the phase portrait in the finite plane. (Draw the curves where \(\dot{x} = 0 \) and \(\dot{y} = 0 \). Determine the signs of \(\dot{x} \) and \(\dot{y} \) in the regions between these curves. Use this information to draw the phase portrait.)
(c) Show that there is a unique orbit \(\Gamma^+ \) for which \(\frac{y}{x} \to 0 \) as \(x \to \infty \), and a unique orbit \(\Gamma^- \) for which \(\frac{y}{x} \to 0 \) as \(x \to -\infty \). Suggestion: use the coordinates \(u = \frac{1}{x}, v = \frac{y}{x} \).
(d) On \(\Gamma^+ \), what does \(\frac{y}{x} \) approach as \(x \to -\infty \)? On \(\Gamma^- \), what does \(\frac{y}{x} \) approach as \(x \to \infty \)? Try to answer these questions by combining information from parts (b) and (c).

2. Suppose that \(b(t) \) is a 2\(\pi \)-periodic continuous function and let \(b_0 = \int_0^{2\pi} b(s) \, ds \). Show that all solutions of \(\dot{x} = b(t) \) are 2\(\pi \)-periodic if \(b_0 = 0 \); otherwise, they are all unbounded. Hint: Show that the Poincaré map is \(P(\xi) = \xi + b_0 \).

3. Fredholm’s Alternative. Suppose that \(a(t) \) and \(b(t) \) are 2\(\pi \)-periodic continuous functions, and let \(a_0 = \int_0^{2\pi} a(s) \, ds \). Show the following properties of the differential equation \(\dot{x} = a(t)x + b(t) \).

(a) If \(a_0 \neq 0 \), then there is a unique 2\(\pi \)-periodic orbit. It is asymptotically stable if \(a_0 < 0 \), and asymptotically unstable if \(a_0 > 0 \).
(b) Let \(c_0 = \int_0^{2\pi} \exp\{ \int_s^{2\pi} a(u) \, du \} b(s) \, ds \). If \(a_0 = 0 \), then every solution is 2\(\pi \)-periodic if and only if \(c_0 = 0 \).
(c) If \(a_0 = 0 \), then every solution is unbounded if \(c_0 \neq 0 \).

Hint: Show using the variation of constants formula that the Poincaré map is

\[P(\xi) = e^{a_0} \xi + \int_0^{2\pi} \exp\{ \int_s^{2\pi} a(u) \, du \} b(s) \, ds, \]

and \(P(\xi) = \xi \) if and only if \((1 - e^{a_0})\xi = c_0 \).
4. Show that the differential equation \(\dot{x} = -x^5 + c(t) \), where \(c(t) \) is a \(2\pi \)-periodic continuous function, has a \(2\pi \)-periodic solution. Show that any such solution is asymptotically stable. Explain why this implies that there is only one \(2\pi \)-periodic solution.

5. Let \(c(t) \), \(d(t) \), and \(e(t) \) be \(2\pi \)-periodic continuous functions. Show that the differential equation
 \[
 \dot{x} = -x^3 + c(t)x^2 + d(t)x + e(t)
 \]
has at least one \(2\pi \)-periodic solution. Show that if this solution is unstable, then there must be another \(2\pi \)-periodic solution. Hint: Show that \(\dot{x} \) is negative if \(x \) is sufficiently positive, and positive if \(x \) is sufficiently negative.

6. Riccati Equation. Suppose that \(a(t) \) and \(b(t) \) are \(2\pi \)-periodic continuous functions. Prove that the Riccati equation
 \[
 \dot{x} = b(t) + a(t)x - x^2
 \]
has at most two \(2\pi \)-periodic solutions. Hint: Suppose that \(\phi(t) \) is a \(2\pi \)-periodic solution. If \(x(t) \) is another solution, let \(y(t) = x(t) - \phi(t) \). Show that
 \[
 \dot{y} = c(t)y - y^2,
 \]
where \(c(t) = a(t) - 2\phi(t) \). Then let \(w(t) = \frac{1}{y(t)} \). Show that
 \[
 \dot{w} = -c(t)w + 1
 \]
Use the Fredholm Alternative to discuss separately the cases \(\int_0^{2\pi} c(t) \, dt \neq 0 \) and \(\int_0^{2\pi} c(t) \, dt = 0 \).

7. Show that \(x = \sin t \) is a \(2\pi \)-periodic solution of the differential equation
 \[
 \dot{x} = -x^3 + 2x + \sin^3 t - 2 \sin t + \cos t.
 \]
Show that this solution is unstable with \(P'(0) = e^{2\pi i} \). How many more \(2\pi \)-periodic solutions can you guarantee?

8. Suppose that \(a(t) \) is \(2\pi \)-periodic with \(0 < a(t) < 1 \) for all \(t \). Show that the differential equation \(\dot{x} = x(x - a(t))(x - 1) \) has at least three \(2\pi \)-periodic solutions. Hint: Show that \(x(t) = 0 \) and \(x(t) = 1 \) are asymptotically stable, and explain why this implies that there is a \(2\pi \)-periodic solution between them.