MA 532 Supplementary Problems 6

October 24, 2003

This homework is an expanded version of Problem 2.30 in the text.

1. Recall that $(A + B)^T = A^T + B^T$, $(cA)^T = cA^T$, and $(A_1 A_2 \ldots A_k)^T = A_k^T \ldots A_2^T A_1^T$.

 (a) Let A be an $n \times n$ matrix. Let $p(x)$ be a polynomial, $p(x) = \Sigma_{i=0}^{k} a_i x^i$. Show that $(p(A))^T = p(A^T)$.

 (b) Explain why (a) implies that $(e^{tA})^T = e^{tA^T}$.

2. Let A be an $n \times n$ matrix. Recall that A is skew-symmetric if $A^T = -A$, and A is orthogonal if $A^T A = I$.

 (a) Show: If S is skew-symmetric, then S and S^T commute.

 (b) Using (a) and 1(b), show: If S is skew-symmetric, then e^{tS} is orthogonal.

3. Let S be a 3×3 skew-symmetric matrix whose entries are not all 0.

 (a) Show that the eigenvalues of S are 0 and $\pm \beta i$, $\beta > 0$. Hint: $S = \begin{pmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{pmatrix}$.

 (b) Let $x(t)$ be a solution of $\dot{x} = Sx$. Show that $x(t + \frac{2\pi}{\beta}) = x(t)$.

 (c) Let v be an eigenvector of S for the eigenvalue 0. Try to explain intuitively why multiplication by e^{tS} is just rotation about the direction v, through the angle βt.

4. Let v be a vector in R^3 with $v \neq 0$. Consider the differential equation $\dot{x} = v \times x$.

 (a) Find a 3×3 matrix S such that $\dot{x} = Sx$. Show that S is skew-symmetric.

 (b) By 3(a), the eigenvalues of S are 0 and $\pm \beta i$. What is the eigenvector for the eigenvalue 0? How is β related to the length of v?