This problem set is based on problem 2.11 in the text, but I’ve made it a little more precise.

A Ming vase is sold at auction. The auction works like this. The auctioneer calls out the price k dollars. Any bidder who wants may raise her hand.

1. If more than one bidder raises her hand, the auctioneer calls out the price $k + 1$ dollars.
2. If exactly one bidder raises her hand, the auction is over, and the vase is sold to that bidder for k dollars.
3. If no bidder raises her hand, the auction is over, but the vase is not sold to anyone.

The bidders raise their hands simultaneously. The auctioneer begins at 1 dollar.

There are n bidders, $n \geq 2$. The value of the vase to bidder i is v_i dollars; v_i is a positive integer. The payoff to bidder i is 0 if bidder i does not win the vase, and is v_i minus the price if player i does win the vase.

A strategy for bidder i is simply the set of prices at which bidder i will raise her hand, if the auctioneer calls out that price. For example, if bidder i is willing to bid up to 5 dollars, her strategy is the set $\{1, 2, 3, 4, 5\}$. You may assume that each bidder’s strategy is a finite set. However, you should not assume that each bidder’s strategy is a set of consecutive integers that starts with 1. For example, a possible strategy is $\{2, 4, 5\}$.

1. Let s_i be a strategy for bidder i in which the highest bid is k dollars, with $k > v_i$. Let t_i be the strategy for bidder i that is obtained from s_i, ...
by deleting the bid k. Show that t_i weakly dominates s_i. (Suggestion: For any choice of strategies by the other players, if the auction is over before the bidding reaches k dollars, t_i and s_i give the same result. What if the bidding reaches k dollars?)

2. Explain why problem 1 implies that every strategy of bidder i in which some bid is higher than v_i dollars is weakly dominated by a strategy in which no bid is higher than v_i dollars.

3. Let s_i be a strategy for bidder i in which the highest bid is k dollars, with $k \leq v_i$. Suppose s_i does not include all bids from 1 to k. Let l be the lowest bid that is not included in s_i. Let t_i be the strategy for bidder i obtained from s_i by including the bid l. Show that t_i weakly dominates s_i. (Suggestion: Consider the following cases: (1) The auction is over before the bidding reaches l dollars. (2) The auction reaches l dollars, but no bidder other than the ith bids l dollars. (3) The auction reaches l dollars, and exactly one bidder other than the ith bids l dollars. (4) The auction reaches l dollars, and two or more bidders other than the ith bid l dollars.)

4. Consider the following collection of strategies for bidder i: $\{1\}$, $\{1, 2\}$, $\{1, 2, 3\}$, . . . , $\{1, 2, ..., v_i\}$. Explain why problems 1–3 imply that every strategy for bidder i that is not in this collection is weakly dominated by one of the strategies in the collection.

5. Show that bidder i’s strategies $\{1\}$, $\{1, 2\}$, $\{1, 2, 3\}$, . . . , $\{1, 2, ..., v_i - 2\}$ are all weakly dominated by her strategies $\{1, 2, ..., v_i - 1\}$ and $\{1, 2, ..., v_i\}$.

6. Does either of bidder i’s strategies $\{1, 2, ..., v_i - 1\}$ and $\{1, 2, ..., v_i\}$ weakly dominate the other?