1. Let
\[f(x, y) = \begin{cases} \frac{x^2 y}{\sqrt{x^2 + y^2}} & \text{if } (x, y) \neq (0, 0), \\ 0 & \text{if } (x, y) = (0, 0). \end{cases} \]

Using the definition of derivative, prove: \(Df(0, 0) = [0 \ 0] \). Hint: \(x^2 \leq x^2 + y^2 \).

2. Suppose \(f : \mathbb{R}^3 \to \mathbb{R}^2 \) is
\[f(x_1, x_2, x_3) = (x_1^2 x_2 x_3, x_2^2 + x_3^2), \]
and \(g : \mathbb{R} \to \mathbb{R}^3 \) is
\[g(t) = (2t + 1, e^t, 4). \]

(a) Calculate \(Df(x_1, x_2, x_3) \) and \(Dg(t) \).
(b) Using the chain rule that we learned this semester, which involves multiplication of matrices, calculate \(D(f \circ g)(0) \).

3. Consider the system of equations
\[(x^2 + u^2)(y^2 + v^2) = 1, \]
\[x \cos u + y \sin v = 1. \]

(a) Show that the Implicit Function Theorem implies we can solve for \((x, y)\) in terms of \((u, v)\) near \((x, y, u, v) = (1, 1, 0, 0)\).
(b) Compute the matrix of partial derivatives of \((x, y)\) with respect to \((u, v)\) at that point.
Do two of the following three problems.

(4) Prove: If \(f: \mathbb{R}^n \to \mathbb{R}^m \) is differentiable at \(x_0 \), then \(f \) is continuous at \(x_0 \).

(5) Suppose \(f: \mathbb{R}^n \to \mathbb{R} \) is a \(C^2 \) function, \(Df(0) = 0 \), and the bilinear form associated with \(D^2f(0) \) is negative definite. Prove that \(f \) has a local maximum at \(x = 0 \). (In your proof you may use Taylor’s formula and the lemma that says: if \(B \) is a negative definite bilinear form, then there is a constant \(m > 0 \) such that \(B(x, x) \leq -m \|x\|^2 \) for all \(x \in \mathbb{R}^n \)).

(6) Let \(A \subset \mathbb{R}^n \) be convex. (This means that if \(x \) and \(y \) are in \(A \), then the entire line segment that joins them is in \(A \).) Let \(f: A \to \mathbb{R}^m \) be \(C^1 \). Suppose there is a number \(M > 0 \) such that for all \(x \in A \) and all \(z \in \mathbb{R}^n \), \(\|Df(x)z\| \leq M\|z\| \). Prove: If \(x \in A \) and \(y \in A \) then \(\|f(x) - f(y)\| \leq M\|y - x\| \). Suggestions: (1) Let \(h(t) = f(x+t(y-x)) \). (2) You may use the following: If \(g: [a, b] \to \mathbb{R}^m \) is continuous, then \(\| \int_a^b g(t) dt \| \leq \int_a^b \| g(t) \| dt \).