MA 425-002 Final Exam

S. Schecter

December 7, 2005

Do eight problems. The answers to problems 1, 3, 4, 5 and 8 should include the expression, “Let \(\epsilon > 0. \)

1. Let \(x_n = \frac{2n^2}{1+n^2}. \) Prove that \(x_n \to 2. \)

2. Let \((x_n) \) be a sequence such that \(x_n \to x. \) Suppose \(x < 0. \) Prove that there is a number \(N \) such that \(x_n < 0 \) for all \(n > N. \)

3. Prove: If \((x_n) \) is a bounded decreasing sequence and \(u = \inf \{x_n : n \in \mathbb{N} \}, \) then \(x_n \to u. \)

4. Let \(f : (0, \infty) \to \mathbb{R} \) and \(g : (0, \infty) \to \mathbb{R} \) be functions. Assume:

 (a) \(f(x) > 0 \) for all \(x. \)
 (b) \(\lim_{x \to 0} f(x) = \infty. \)
 (c) \(g \) is a bounded function.

 Prove that \(\lim_{x \to 0} \frac{g(x)}{f(x)} = 0. \)

5. Show that the function \(f(x) = \frac{1+x}{x^2} \) is uniformly continuous on the interval \(1 \leq x < \infty. \)

6. Let \(f : \mathbb{R} \to \mathbb{R} \) be a function such that for every \(x, -x^2 \leq f(x) \leq x^2. \) Prove that \(f \) is differentiable at \(0, \) and \(f'(0) = 0. \) (Notice that \(f(0) \) has to be 0. Be careful with this problem. If you divide by \(x \) when \(x \) is negative, inequalities reverse.)
7. Let \(f : [a, b] \to \mathbb{R} \) be a differentiable function. Assume that \(f' \) is a strictly increasing function on \([a, b]\). (This means: If \(x_1 \in [a, b], x_2 \in [a, b], \) and \(x_1 < x_2 \), then \(f'(x_1) < f'(x_2) \).) Prove: \(f(b) - f(a) - f'(a)(b - a) > 0 \). Hint: What does the Mean Value Theorem tell you about \(f(b) - f(a) \)?

8. Let

\[
\begin{align*}
f_n(x) &= \frac{1 + nx^2}{nx}, \quad 0 < x < \infty, \\
f(x) &= x, \quad 0 < x < \infty.
\end{align*}
\]

Show that if \(a > 0 \), then \(f_n \to f \) uniformly on the interval \(a \leq x < \infty \).

9. Let \(f : [a, b] \to \mathbb{R} \) be a continuous function, and let \(c \in (a, b) \). Assume:

- \(f(x) \geq 0 \) for all \(x \in [a, b] \).
- \(f(c) > 0 \).

Show that \(\int_a^b f > 0 \).

10. Let \((a_n) \) and \((b_n) \) be positive sequences. Suppose \(\sum_{n=1}^{\infty} a_n \) and \(\sum_{n=1}^{\infty} b_n \) both converge. Show that \(\sum_{n=1}^{\infty} a_n b_n \) converges.