Due Thursday, November 10

(1) Consider the system

\[
\dot{x} = Ax + Bu \\
y = Cx + Du
\]

where

\[
A = \begin{bmatrix}
3 & 6 & 4 \\
9 & 6 & 10 \\
-7 & -7 & -9
\end{bmatrix} \quad B = \begin{bmatrix}
-2/3 & 1/3 \\
1/3 & -2/3 \\
1/3 & 1/3
\end{bmatrix} \quad C = \begin{bmatrix}
1 & 2 & 3 \\
3 & 3 & 6
\end{bmatrix} \quad D = 0.
\]

(a) Show that the system is not controllable and use a QR decomposition to find a Kalman controllable canonical form.

(b) Show that the system is not observable and use a QR decomposition to find a Kalman observable canonical form.

(2) Consider the system

\[
\dot{x} = Ax + Bu \\
y = Cx.
\]

In the next chapter, we will study feedback systems in which the control is specified by

\[
u(t) = -Fx(t)
\]

where \(F\) is chosen to attain or enhance stability margins or achieve some other goal. Note that the resulting system has the form

\[
\dot{x} = (A - FB)x \\
y = Cx.
\]

One way to choose \(F\) is through a technique termed pole or eigenvalue placement which is facilitated by the companion controller form (further details can be found on pages 330-335 of our text). To illustrate, consider a system

\[
\dot{z} = \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{bmatrix} \begin{bmatrix}
\alpha_0 \\
-\alpha_1 \\
-\alpha_2 \\
\vdots \\
-\alpha_{n-1}
\end{bmatrix} + \begin{bmatrix}
0 \\
0 \\
\vdots \\
1
\end{bmatrix} u
\]

where the \(\alpha_i\)'s are the coefficients of the characteristic polynomial

\[
\alpha(s) = |sI - A| = s^n + \alpha_{n-1} s^{n-1} + \cdots + \alpha_1 s + \alpha_0.
\]

We now consider a feedback control of the form

\[
u(t) = -f_0 z_1 - f_1 z_2 - \cdots - f_{n-1} z_n = -F_c z.
\]
The closed loop system will now have the form

\[
\dot{x} = \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-(\alpha_0 + f_0) & -(\alpha_1 + f_1) & -(\alpha_2 + f_2) & \cdots & -(\alpha_{n-1} - f_{n-1})
\end{bmatrix} x.
\]

Note that the signs of the \(f_i \) are opposite those in the book. This is to accommodate the more common convention of considering \(A - BF \), and yields the same final result.

Now, if the desired closed loop eigenvalues are specified by \(s^d_1, s^d_2, \ldots, s^d_n \), then the desired characteristic equation will be

\[
\Delta^d(s) = (s - s^d_1)(s - s^d_2) \cdots (s - s^d_n) = s^n + \alpha^d_{n-1}s^{n-1} + \cdots + \alpha^d_1s + \alpha^d_0
\]

from which it follows that

\[
\alpha_0 + f_0 = \alpha^d_0 \Rightarrow f_0 = \alpha^d_0 - \alpha_0 \\
\alpha_1 + f_1 = \alpha^d_1 \Rightarrow f_1 = \alpha^d_1 - \alpha_1 \\
\vdots
\]

\[
\alpha_{n-1} + f_{n-1} = \alpha^d_{n-1} \Rightarrow f_{n-1} = \alpha^d_{n-1} - \alpha_{n-1}
\]

Given specified eigenvalue locations, this provides an algorithm for computing the feedback gain \(F \). Note that if the system is not in companion form, previously discussed similarity transforms can be applied first to obtain this form.

(a) Consider the system

\[
\dot{z} = \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
-2 & -5 & -10
\end{bmatrix} z + \begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix} u.
\]

Determine the eigenvalues for the system and discuss its stability. Now find a feedback \(F_c \) so that the closed loop system has eigenvalues located at \(s^d_{1,2} = -1 \pm i, s^d_3 = -5 \). Be sure to check the final system matrix to ensure that these values are obtained.

(b) Now consider the system

\[
\dot{x} = \begin{bmatrix}
1 & 2 & 0 \\
1 & -3 & 4 \\
-1 & 1 & -9
\end{bmatrix} x + \begin{bmatrix}
1 \\
2 \\
-1
\end{bmatrix} u.
\]

Again, check the stability of the system. Determine a transformation \(P \) which transforms the system to controller companion form. Finally, compute a feedback \(F = F_cP \) so that the closed loop system has eigenvalues at \(-1, -2, -3\). Note that the Matlab command \texttt{poly.m} can be used to find the characteristic polynomial of the matrix \(A \).