(1) A string having mass per unit length ρ and length L is whirled about one end, with angular velocity ω, so that the motion is in a plane (neglect gravity). Using the property that the centripetal force exerted on a mass m moving in a circle of radius r with angular velocity ω is $F = mr\omega^2$, show that the tension in the string is

$$T(x) = \frac{1}{2} \rho \omega^2 (L^2 - x^2),$$

where x is the distance from the stationary end. Show that the motion of the string is modeled by the differential equation

$$\rho \frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial x} \left(T \frac{\partial u}{\partial x} \right).$$

Specify appropriate boundary conditions.

(2) Here we are going to model the motion of a jump rope of length L, having mass per unit length ρ, that is rotating at constant angular velocity ω. You can assume that it is fixed at both ends and that the tension T is uniform throughout the rope. You can also neglect the effects of gravity. The out-of-plane displacement of the rope is denoted by $u(t, x)$. Finally, you can use the fact that the centripetal acceleration due to the angular velocity is $a = r\omega^2 \approx u\omega^2$.

(a) Show that the motion of the rope is modeled by the differential equation

$$\rho u\omega^2 + T \frac{d^2 u}{dx^2} = 0.$$ \(1\)

(b) Determine the solution to (1). Are there restrictions on ω?

(3) Consider a rectangular membrane of length L and width a that is fixed along all four edges. You can assume that the tension T is uniform at all points in the membrane and that the density (kg/m2) is ρ. Determine the kinetic and potential energy of the membrane and use Lagrangian principles to develop a weak formulation of the model. Use integration by parts to verify that if weak solutions are sufficiently smooth, then the weak and stong formulations are equivalent.