Project 3

1a) Shock should move to the left with speed determined by your parameter choices.

6) The solution along characteristic curves

\[\frac{dx}{dt} = \frac{u}{\max} \left(1 - \frac{2p}{\rho_{\text{max}}} \right) \]

is constant. Thus

\[\frac{dx}{dt} = \begin{cases}
\frac{u}{\max}, & p > p_r \\
-\frac{u}{\max}, & p < p_r
\end{cases} \]

2.)
Because the flow is steady, the continuity equation is

\[\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0 \Rightarrow \frac{\partial v}{\partial y} = 0 \text{ since } u = w = 0. \]

However, \(\frac{\partial u}{\partial x} = 0 \) so \(p = p(y, z) \). The \(y \)-component of the Navier-Stokes equations is

\[\frac{\partial p}{\partial y} = \mu \left(\frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right) = \frac{\partial p}{\partial y} = \mu \frac{\partial^2 v}{\partial y^2} \]

\[\Rightarrow v(y) = \frac{1}{2 \mu} \frac{\partial p}{\partial y} y^2 + c_1 z + c_2 \]

\[\Rightarrow v(y) = \frac{1}{2 \mu} \frac{\partial p}{\partial y} (z^2 - 2h) + \frac{V_0}{h} y. \]

Now,

\[p = \mu \frac{\partial^2 v}{\partial y^2} y + h \]

Note: \(T_{xz} = T_{xy} = 0 \) since \(v = v(z) \) and \(u = w = 0 \). Moreover,

\[T_{yz} = \mu \frac{\partial v}{\partial z} = \frac{1}{2} \frac{\partial p}{\partial y} (z^2 - h) + \frac{V_0}{h}. \]