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Abstract

This thesis establishes fundamental enumerative and order-theoretic results about the Bruhat order

on a Coxeter group, also known as the strong Bruhat order or Chevalley-Bruhat order. One set of

results stems from a structural recursion on intervals in the Bruhat order. The recursion gives the

isomorphism type of a Bruhat interval in terms of smaller intervals, using basic geometric operations

which preserve the Eulerian property and PL sphericity, and have a simple effect on the cd-index.

This leads to a new inductive proof that Bruhat intervals are PL spheres as well a recursive formula

for the cd-index of Bruhat intervals. This recursive formula leads to a proof that the cd-indices of

Bruhat intervals span the space of cd-polynomials. The structural recursion is used to construct

Bruhat intervals which are the face lattice of the duals of stacked polytopes. We conjecture that

these dual stacked polytopes constitute the upper bound for the cd-indices of Bruhat intervals. As a

special case of the conjecture, we show that the flag h-vectors of lower Bruhat intervals are bounded

above by the flag h-vectors of Boolean algebras (i. e. simplices).

We determine the order dimension of the Bruhat order on finite Coxeter groups of types A, B

and H. The order dimension is determined using a generalization of a theorem of Dilworth: dim(P ) =

width(Irr(P )), whenever P satisfies a simple order-theoretic condition called here the dissective

property (or “clivage” in [32, 39]). The result for dissective posets follows from an upper bound and

lower bound on the dimension of any finite poset. The dissective property is related, via MacNeille

completion, to the distributive property of lattices. We show a similar connection between quotients

of the Bruhat order with respect to parabolic subgroups and lattice quotients.
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Chapter 1

Introduction

1.1 Bruhat order

Coxeter groups and Bruhat order (sometimes called “strong Bruhat order”) lie in the intersection of

several important research areas of modern mathematics, including Lie theory, algebraic geometry,

combinatorial group theory, hyperplane arrangements and the theory of posets and lattices. In this

thesis, we present new enumerative and order-theoretic results on the Bruhat order.

Readers not familiar with Coxeter groups should concentrate on the symmetric group Sn of

permutations of the numbers {1, 2, . . . , n}. We will follow an example in S4. Elements of S4 can

be written as permutations, using “one-line notation.” For example, write 3412 for

(

1234

3412

)

, the

permutation mapping 1 7→ 3, 2 7→ 4, 3 7→ 1 and 4 7→ 2. In general, a Coxeter group W has a

set S of special generators called Coxeter generators. In the case of S4, the Coxeter generators are

S = {(12), (23), (34)}. The notation (12) refers to the permutation which switches the elements 1

and 2 and fixes all other elements. For convenience, set r := (12), s := (23) and t := (34).

We will write elements of a Coxeter group W as words in S. There are infinitely many ways to

write an element as a word. For example, the permutation 3412 ∈ S4 can be written inefficiently in

many ways:

rsrsrtrs = rsrsts = srttts,

etc. Given an element w of S4, the length l(w) of w is defined to be the length of a smallest possible

word for w, and a word of that length is called a reduced word for w. In Sn, the length of an element

is exactly its inversion number. The inversion number of a permutation π ∈ Sn is the number of

pairs i < j in {1, 2, . . . , n} such that j occurs to the left of i in the one-line notation for π. For

example, the element 3412 ∈ S4 has 3 occurring before 1 and 2 as well as 4 occurring before 1 and

2, so the length of 3412 is 4. There are two reduced words for 3412:

srts = strs.

Bruhat order on Sn is defined in terms of “undoing” inversions. If l(u) < l(w) and u and w differ

1



by interchanging two entries in one-line notation, then u ≤ w in Bruhat order, and more generally,

u ≤ w in Bruhat order if w can be changed to u by a sequence of such interchanges, each decreasing

the length. So for example, we can change 3412 to 1324 by interchanging elements two at a time:

3412→ 3142→ 3124→ 1324,

and each of these interchanges decreases the number of inversions, so 1324 ≤ 3412. Figure 1.1 shows

the Bruhat interval [1, srts] or [1234, 3412] in S4.

Figure 1.1: The interval [1, srts] or [1234, 3412] in S4.

srts

rtsstssrssrt

tsstrtrssr

tsr

1

3412

2413143232143142

14231342214323143124

124313242134

1234

The remaining sections in this chapter are informal summaries of Chapters 3 and 4. These

summaries aim to be as non-technical as possible, and precise definitions are put off until Chapter 2.

More rigorous summaries are given at the beginning of Chapters 3 and 4.

1.2 Summary of Chapter 3

The results presented in Chapter 3 derive from a structural recursion on intervals in the Bruhat

order. This recursion, although developed independently, has some resemblance to work by DuCloux

[19] and by Dyer [21]. Specifically, the recursion gives the isomorphism type of a Bruhat interval

in terms of smaller intervals, using the basic geometric operations of pyramid, vertex shaving and

zipping.

The pyramid operation on a partially ordered set (poset) replaces each element x of the poset

with a pair (x, 1) and (x, s), as shown in Figure 1.2. The resulting poset is called Pyr(P ). For

readers familiar with products of posets, the pyramid operation on a poset P is the product of P

with a two-element chain.

The pyramid operation gets its name from a corresponding operation on polytopes or spherical

cell complexes. In the case of polytopes, the pyramid operation turns, for example, a square into

a square pyramid. In a way that is made precise in Section 2.4.6, Bruhat intervals correspond

to spheres. Figure 1.3 shows the sphere corresponding to [1, srt], and also the pyramid operation

2



Figure 1.2: The pyramid operation. On the left is the Bruhat interval [1, srt] in S4, and on the

right is Pyr([1, srt]).

(srt,s)

(st,s)(rt,s)(sr,s)(srt,1)

(t,s)(s,s)(r,s)(st,1)(rt,1)(sr,1)

(1,s)(t,1)(s,1)(r,1)

(1,1)

srt

strtsr

tsr

1

applied to that sphere. The right-hand picture represents a projection of the sphere onto the plane,

with the shaded rectangle denoting an unbounded region.

Figure 1.3: The pyramid operation on spheres. On the left is sphere corresponding to [1, srt], and

on the right is the pyramid of that sphere.

stsr

rt t

s

r

(sr,s)
(st,s)

(rt,s)
(t,s)

(s,s)

(r,s)

(st,1)(sr,1)

(rt,1)

(1,s)

(t,1)

(s,1)

(r,1)

(srt,1)

The zipping operation takes three elements of a poset and “zips” them—identifies them to make

a single new element. There are technical conditions on these triples of elements which are given in

Section 3.2. We will illustrate the zipping operation with an example of the structural recursion on

Bruhat intervals. Starting with the Bruhat interval [1, srt] in S4, we construct the interval [1, srts].

Naively, we would like to replace each element in x with a pair of elements x and xs. However,

that assumes that the length of the element xs is actually greater than the length of x. In the case

of the element s ∈ [1, srt], ss is the identity element, and has length 1. We can rescue this naive

start using the zipping operation. We start with [1, srt] and formally multiply by s, by performing

3



a pyramid operation, as shown in Figure 1.2. The elements (s, 1), (1, s), and (s, s) form a zipper,

and when this zipper is zipped, the result is a poset isomorphic to [1, srts]. Figure 1.4 illustrates

the zipping operation, and Figure 1.5 illustrates the corresponding operation on spheres.

Figure 1.4: The left picture shows the zipper ((s, 1), (1, s), (s, s)) lightened in Pyr([1, srt]). In the

right picture, the zipper has been zipped, and the result is the poset [1, srts].

(srt,s)

(st,s)(rt,s)(sr,s)(srt,1)

(t,s)(s,s)(r,s)(st,1)(rt,1)(sr,1)

(1,s)(t,1)(s,1)(r,1)

(1,1)

srts

stsrtssrssrt

tsrsstrtsr

tsr

1

Figure 1.5: Spheres corresponding to the posets in Figure 1.4.

(sr,s)
(st,s)

(rt,s)
(t,s)

(s,s)

(r,s)

(st,1)(sr,1)

(rt,1)

(1,s)

(t,1)

(s,1)

(r,1)

(srt,1)

srs

srt

sts

rts

ts

stsr

rs

rt t

s

r

In general, when l(us) > l(u) and l(ws) > l(w), to construct the interval [u,ws] from [u,w] one

first performs the pyramid operation. Then one zips one zipper for each v ∈ [u,w] with l(vs) < l(v).

In order to construct all Bruhat intervals, one must also be able to construct [us,ws] as well. To

accomplish this, one needs the operation of shaving a vertex. The name of this operation refers

to polytopes: one creates a new facet which cuts off some vertex, as pictured in Figure 1.6. The

operation of shaving the vertex v is denoted Sv and will be formally defined in Sections 2.3, 2.4 and

3.4.
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Figure 1.6: Shaving the vertex s from the sphere associated to the interval [1, rst].

st rs

rt r

s

t

(rst,1)

(st,s) (rs,s)

(rt,s) (r,s)

(rs,1)(st,1)

(t,s)

To construct [us,ws] from [u,w], one first shaves the vertex us and then zips one zipper for each

v ∈ (us,w) with l(vs) < l(v). For example, to construct [s, rsts] from [1, rst], first shave the vertex

s, as shown in Figure 1.6. Then zip the zipper (rs, 1), (r, s), (rs, s), as shown in Figure 1.7.

Figure 1.7: The left picture shows a zipper in the sphere corresponding to [1, rst]. In the right

picture, the zipper has been zipped, giving a sphere which corresponds to the Bruhat interval

[s, rsts].

(rst,1)

(st,s) (rs,s)

(rt,s) (r,s)

(rs,1)(st,1)

(t,s)

rst

sts

rts

rs

st

ts

Given a poset that corresponds to a sphere, the operations of pyramid, vertex shaving and

zipping each produce a new poset which corresponds to a sphere. Thus the structural recursion

constitutes a new proof that Bruhat intervals are spheres. To be correct, we should actually say

“PL sphere” instead of “sphere” everywhere in this paragraph. The definition of PL sphere will be

given in Section 2.4.

The recursion also leads to a recursive formula for the cd-index of Bruhat intervals. The cd-index

is a polynomial in non-commuting variables c and d, which encodes a large amount of enumerative

information about Bruhat intervals. Specifically, replacing c by a+ 2b and d by ab+ ba+ 2bb gives

the flag-index, a polynomial in non-commuting variables a and b which counts the chains in the

poset according to the ranks they visit. A chain in a poset is a set of elements x1, x2, . . . , xk with

x1 < x2 < . . . < xk. Each monomial in the flag index counts a certain set of chains in an interval
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[u,w]. An a in the ith position in an ab-monomial means that the coefficient of that monomial is

counting chains which have no element at rank l(u) + i, and a b indicates that the coefficient is

counting chains containing an element of length l(u) + i.

We will illustrate with an example. The poset [1, srts] in Figure 1.1 has cd-index c3 + 2cd+ dc,

which means its flag-index is:

a3 + 4a2b+ 5aba+ 10ab2 + 3ba2 + 10bab+ 10b2a+ 20b3.

There are 3 chains which contain an element of length 1 but no elements of lengths 2 or 3, so the

coefficient of ba2 is 3. Each of these chains consists of a single element, and the three chains are

{r}, {s} and {t}. There are 10 chains which contain elements of lengths 1 and 3 but not of length 2,

and thus the coefficient of bab in the flag-index is 10. For example, some of these chains are {s, srt}

and {t, sts}. The set {t, srs} is not a chain, because t 6< srs. There are 20 chains which contain

elements of lengths 1, 2 and 3 so the coefficient of bbb in the flag-index is 20. Some of these chains

are s < sr < srt and t < ts < sts.

The poset operations of pyramid, vertex shaving and zipping have nice effects on the cd-index—

for precise statements, see Propositions 2.5.2 and 2.5.3 and Theorem 3.2.6. Thus the structural

recursion leads to the following formula, where Ψ is the cd-index. The following is an abbreviated

version of Theorem 3.1.1.

Theorem 3.1.1. Let u < us, w < ws and u ≤ w.

If us 6∈ [u,w], then Ψ[u,ws] = PyrΨ[u,w], and Ψ[us,ws] = Ψ[u,w].

If us ∈ [u,w], then

Ψ[u,ws] = PyrΨ[u,w] −
∑

v∈(u,w):vs<v

Ψ[u,v] · d ·Ψ[v,w]

Ψ[us,ws] = SusΨ[u,w] −
∑

v∈(us,w):vs<v

Ψ[us,v] · d ·Ψ[v,w]

So, for example, Ψ[1,srt] = c2+d. For u ≤ w, whenever l(w) = l(u)+1, Ψ[u,w] = 1 and whenever

l(w) = l(u) + 2, Ψ[u,w] = c. Since 1 < s, srt < srts, 1 < srts and s ∈ [1, srts], the cd-index of

[1, srts] is

Ψ[1,srts] = PyrΨ[1,srt] −Ψ[1,s] · d ·Ψ[s,srt]

= c3 + 2cd+ 2dc− 1 · d · c

= c3 + 2cd+ dc

Theorem 3.1.1 allows us to make some progress towards characterizing the cd-indices of Bruhat

intervals. First, we are able to show that the linear span of cd-indices of Bruhat intervals is the entire

linear span of cd-polynomials. Also, Stanley [56] conjectured that the coefficients of the cd-index

are non-negative for a large class of posets including Bruhat intervals. Assuming non-negativity,

6



Theorem 3.1.1 motivates a conjectural upper bound on the cd-coefficients. The idea is that since

zippings would reduce the cd-index, the maximum cd-index would be attained on intervals which

can be constructed without zipping.

A polytope is said to be dual stacked if it can be obtained from a simplex by a series of vertex-

shavings. So for example, every polygon is dual stacked. Using the structural recursion, we are

able to construct Bruhat intervals which are dual stacked. That is, the structural recursion starts

with a 1-element poset and performs a series of pyramid operations to obtain a simplex, and then

a series of vertex shavings, with no zippings. The following conjecture is supported by computer

calculations:

Conjecture 3.1.2. The coefficientwise maximum of all cd-indices Φ[u,v] with l(u) = k and l(v) = n

is attained on a Bruhat interval which is isomorphic to a dual stacked polytope of dimension n−k−1

with n facets.

As discussed in Section 3.5, Conjecture 3.1.2 depends on the non-negativity conjecture and is

complicated by some technical difficulties. The situation is slightly better for lower intervals:

Theorem 3.8.2. Assuming the non-negativity of cd-coefficients of Bruhat intervals, for all w ∈W ,

Φ[1,w] ≤ ΦBl(w)
.

Here Bn is the Boolean algebra of rank n. It is not true that the cd-index of general intervals is less

than that of the Boolean algebra of appropriate rank. For example, [1324, 3412] is the face lattice

of a square, with Φ[1324,3412] = c2 + 2d. However, ΦB3
= c2 + d.

Without appealing to a conjecture, we can prove a weaker inequality, namely Theorem 3.8.3

which states that the flag h-vectors of lower Bruhat intervals are bounded above by the flag h-

vectors of Boolean algebras. For definitions, see Section 2.5.

1.3 Summary of Chapter 4

Chapter 4 is organized around the problem of determining the order dimension of Bruhat order on

a finite Coxeter group. Here we mean Bruhat order on the entire group—determining the order

dimension of intervals in Coxeter groups appears to be much harder. We obtain closed formulas

for the order dimensions of the finite Coxeter groups of types A and B, and values for the order

dimensions of the exceptional groups of type H. The results are obtained via a generalization of

Dilworth’s Theorem on the order dimension of distributive lattices.

We will explain this generalization of Dilworth’s result, beginning with an explanation of order

dimension. Given a finite poset P , for large enough d we can realize the elements x ∈ P as vectors

(x1, x2, . . . , xd) in Rd. The goal is to choose vectors so that x ≤ y in P if and only if xi ≤ yi for

each i. The order dimension is the smallest d for which this is possible. As an example, consider the

Bruhat order on S3, shown in Figure 1.8. The elements of S3 are described as words in the Coxeter
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Figure 1.8: The Bruhat order on S3 and an embedding in R2.

rsr

rssr

sr

1

(3,3)

(2,1)

(1,2)

(1,0)

(0,1)

(0,0)

generators r and s. The picture on the right side of Figure 1.8 shows the poset as a set of vectors

in R2.

The “standard example” of a poset of dimension n is the set of subsets of {1, 2, . . . n} of cardinality

1 or n− 1, ordered by inclusion. Figure 1.9 shows the standard example of a poset of dimension 3,

along with a failed attempt to realize it in R2.

Figure 1.9: The standard example of a poset of dimension 3, and a failed attempt to realize it in

R2. The dotted line indicates an order relation in the “realization” which does not appear in the

poset.

{2,3}{1,3}{1,2}

{3}{2}{1}
(3,1)

(2,2)

(1,3)

(2,0)

(1,1)

(0,2)

An element x in a poset P is a dissector if there exists an element β(x) such that the set

{p ∈ P : p 6≥ x} is equal to {p ∈ P : p ≤ β(x)}. For example, in the poset of Figure 1.8, the elements

r, s, rs and sr are all dissectors, and the others are not. Given a set S of elements of P , if the

set {p ∈ P : p ≥ s for all s ∈ S} has a unique minimum element, this element is called the join of

S and denoted ∨S. For example, in the poset of Figure 1.1, the element rts is the join of the set

{rs, s, t}. Although one typically speaks of join-irreducibles of a lattice, the usual definition works

for general posets: An element x is called join-irreducible if x = ∨S implies x ∈ S. So for example

in the poset of Figure 1.8, the element rs is join-irreducible, because the set {1, r, s} of elements

strictly below rs has no join. The element 1 is not join-irreducible, because it is ∨∅, and rsr is also

not join-irreducible. It is easily proven that a dissector must be join-irreducible, so r, s, rs and sr

are all join-irreducible. A poset in which every join-irreducible is a dissector is called dissective.

An antichain in a poset P is a set of elements of P with no order relations among them. So, for
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example, the set {sr, rs, t} is an antichain in the poset of Figure 1.1. The width of a poset is the size

of a largest antichain. Dilworth [18] showed that the width of a poset is also equal to the smallest

number w such that P can be partitioned into w chains. The following theorem is the key to the

order dimension result. A finite lattice is distributive if and only if it is dissective, so the theorem

generalizes another theorem of Dilworth on distributive lattices.

Theorem 4.1.2. If P is a dissective poset then dim(P ) = width(Irr(P )).

Here, Irr(P ) is a poset whose elements are the join-irreducibles of P , such that x ≤ y in Irr(P )

if and only if x ≤ y in P . We call this the subposet of P induced by the join-irreducibles. For

example, in Figure 1.8, Irr(P ) is obtained by deleting the elements 1 and rsr from P . The width of

Irr(P ) is 2, so the dimension of P is 2.

It was previously known [32, 39] that Bruhat order on Coxeter groups of types A, B and H are

dissective. (The Coxeter groups of type A are exactly the symmetric groups Sn.) Theorem 4.1.2

reduces the order dimension calculation to the calculation of the width of a certain subposet of the

Bruhat order. The poset Irr(Sn) can be nicely characterized as a “subrectangle” order, a sort of

two-dimensional version of the subword characterization of Bruhat order. This leads to an elegant

symmetric chain decomposition which determines the width of Irr(Sn). Figure 1.10 shows Irr(S5)

with a symmetric chain decomposition. The labels on the elements describe the rectangles and will

be explained in Section 4.8.

Figure 1.10: A symmetric chain decomposition of Irr(S5). The chains in the decomposition are the

solid lines, and the other order relations are dotted.

(4,4,1)(3,3,2)(2,2,3)(1,1,4)

(3,4,1)(2,3,2)(3,3,1)(1,2,3)(2,2,2)(1,1,3)

(2,4,1)(1,3,2)(2,3,1)(1,2,2)(2,2,1)(1,1,2)

(1,4,1)(1,3,1)(1,2,1)(1,1,1)

Theorem 4.1.2 follows immediately from more general bounds on order dimension. Here Dis(P )

is the subposet of P induced by the dissectors.

Theorem 4.1.5. For a finite poset P , width(Dis(P )) ≤ dim(P ) ≤ width(Irr(P )).

9



We now briefly digress to sketch a simple proof of Theorem 4.1.5, beginning with the lower bound.

The width of Dis(P ) is the size of a largest antichain in Dis(P ). Given any antichain A in Dis(P ),

let β(A) := {β(a) : a ∈ A} ⊆ (P ). It is easily verified that A∪β(A), as an induced subposet of P , is

a standard example of dimension |A| as exemplified in Figure 1.11. Thus width(Dis(P )) ≤ dim(P ).

Figure 1.11: A poset P , with a set A of pairwise three incomparable dissectors, indicated by the

large black dots. The set β(A) is indicated by large gray dots, and A∪ β(A) is a standard example

of a poset of dimension three.

The upper bound is also simple. It is easily checked that any element x of P has x = ∨Ix, where

Ix is the set of join-irreducible elements weakly below x. The set Ix is an order ideal in Irr(P ),

meaning that if k ∈ Ix, j ∈ Irr(P ) and j ≤ k, then j ∈ Ix. An order ideal is thus completely

described by its maximal elements. It is also easily verified that x ≤ y if and only if Ix ⊆ Iy.

The width of Irr(P ) is equal to the size of the smallest decomposition of P into chains. The left

picture of Figure 1.12 shows Irr(P ) for the poset P from Figure 1.11, along with a decomposition of

Irr(P ) into chains. An order ideal is completely determined by the number of elements it contains

from each chain in the decomposition. Thus an element x ∈ P can be encoded as a vector, by

letting xi := |Ix ∪ Ci|, where Ci is the ith chain in the decomposition. Since Ix is an order ideal,

knowing |Ix ∪ Ci| is equivalent to knowing which elements are in Ix ∪ Ci. Thus x ≤ y if and only

if Ix ⊆ Iy if and only if xi ≤ yi for all i. The right picture of Figure 1.12 shows an order ideal in

Irr(P). If the chains are numbered C1, C2, C3 from left to right, the order ideal shown corresponds

to the vector (2, 3, 0). Thus dim(P ) ≤ width(Irr(P )).

Chapter 4 also contains related results having to do with generalizing lattice properties and

constructions to arbitrary posets. In particular, Bruhat orders seem to have several lattice-like
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Figure 1.12: On the left is Irr(P ), for the poset P of Figure 1.11, with the thick lines indicating

a decomposition of Irr(P ) into three chains. The right picture is an order ideal in Irr(P ) which

contains respectively 2, 3 and 0 elements from the three chains.

properties. One such property, the dissective property, was already mentioned. The dissective

property of posets is related to the distributive property of lattices by way of MacNeille completion,

which takes an arbitrary finite poset P and constructs the smallest lattice which contains P as a

subposet. Specifically [39] a poset is dissective if and only if its MacNeille completion is distributive.

Thus Bruhat orders of types A and B have a non-lattice version of the distributive property. In a

similar vein, we define a notion of order congruence which corresponds via MacNeille completion

to lattice congruence. Quotients of the Bruhat order with respect to parabolic subgroups are one

example of quotients with respect to an order congruence.
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Chapter 2

Preliminaries

This chapter is divided into five sections, devoted respectively to posets, Coxeter groups and Bruhat

order, polytopes, CW and PL topology and the cd-index. In each of these sections, the aim is to

present the most basic background material. Readers familiar with the topic of a section may wish

to skip that section, or to read it superficially for conventions of notation and terminology. Some

less well-known material on these topics, including new material, is presented in Chapters 3 and 4.

2.1 Posets

This section contains background information about posets. The poset terminology and notation

used in this thesis is standard and generally agrees with [55] or [58], where proofs of the basic results

quoted here can be found. A partially ordered set or poset is a set P , with a reflexive, antisymmetric,

transitive relation ≤ (sometimes ≤P ). Throughout this thesis, all posets considered are finite. A

partial order is a total or linear order if for any x and y, either x ≤ y or y ≤ x. Given x, y ∈ P ,

x covers y (“x ·>y”) if x > y and if there is no z ∈ P with x > z > y. Two elements x, y ∈ P are

incomparable (denoted x ‖ y) if neither x ≤ y nor y ≤ x. Given x ∈ P , define

D(x) := {y ∈ P : y < x}

U(x) := {y ∈ P : y > x}

D[x] := {y ∈ P : y ≤ x}

U [x] := {y ∈ P : y ≥ x}

I(x) := {y ∈ P : y ‖ x}.

If D(x) = ∅ then x is called minimal , and if U(x) = ∅ then x is called maximal . If P has a unique

minimal element, it is denoted 0̂, and if there is a unique maximal element, it is called 1̂. If I(x) = ∅,

then x is a pivot (sometimes called a bottleneck).

A finite poset can be described pictorially by means of a Hasse diagram. In a Hasse diagram,

elements are vertices, and edges are cover relations, where lesser element in the cover occurs lower on
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the page. All other order relations can be deduced from the Hasse diagram by transitivity. Figure

2.1 in Section 2.2 shows two examples of Hasse diagrams.

If x ≤ y in P , the closed interval [x, y]P is {z ∈ P : x ≤ z ≤ y}, and the open interval (x, y)P

is {z ∈ P : x < z < y}. The subscript P will usually be omitted. Similarly there are “half-open”

intervals (x, y] and [x, y).

Let [n] denote the set of integers {1, 2, . . . , n} and let [k, n] denote the set {k, k + 1, k + 2, . . . , n}.

A subposet of P is a subset S ⊆ P , together with the partial order induced on S by ≤P . Often

this is referred to as an induced subposet . A chain is a totally ordered subposet of P . A chain

is unrefinable if whenever x covers y in the chain, x also covers y in P , and maximal if it is not

properly contained in any other chain. An antichain is a subposet of P whose elements are pairwise

incomparable. The width of a poset is the size of a largest antichain. Dilworth [18] showed that

the width of a poset is also equal to the smallest number w such that P can be partitioned into w

chains. An order ideal is I ⊆ P such that if x ∈ I and y ≤ x, then y ∈ I. A principal order ideal

is an ideal I = D[x] for some x ∈ P . The dual of a poset P is the same set of elements, with the

reversed partial order. A poset is self-dual if it is isomorphic to its dual. A dual order ideal or order

filter is a subset of P which is an order ideal in the dual of P .

A poset is graded if every maximal chain has the same number of elements. A rank function on P

is the unique function such that rank(x) = 0 for any minimal element x, and rank(x) = rank(y)+ 1

if x ·>y. The rank number Rr(P ) is the number of elements of P of rank r. A ranked poset is

called Sperner if its width is equal to the maximum of its rank numbers. A symmetric chain in a

graded poset is an unrefinable chain with bottom and top elements x and y, such that rank(x) =

n− 1− rank(y), where n is the cardinality of a maximal chain. A symmetric chain decomposition is

a decomposition of P into symmetric chains. If P has a symmetric chain decomposition, then it is

Sperner. (In fact it is strongly Sperner , but that definition is not needed here.) Given two posets P

and Q, form their (direct or Cartesian) product P ×Q. The underlying set is the ordered pairs (p, q)

with p ∈ P and q ∈ Q, and the partial order is (p, q) ≤P×Q (p′, q′) if and only if p ≤P p′ and q ≤Q q′.

Later we will need the fact that a product of two chains has a symmetric chain decomposition. The

product of P with a two-element chain is called the pyramid Pyr(P ).

Given posets P and Q, a map η : P → Q is order-preserving if a ≤P b implies η(a) ≤Q η(b). A

poset Q is an extension of P if the two are equal as sets, and if a ≤P b implies a ≤Q b. A linear

extension is an extension which is also a total order. Every poset has a linear extension, and a poset

P is the intersection (as relations) of all linear extensions of P . The order dimension dim(P ) is the

smallest number d such that P is the intersection of d linear extensions of P . Equivalently the order

dimension is the smallest d so that P can be embedded as a subposet of Nd with componentwise

partial order. The “standard example” of a poset of dimension n is the set of subsets of [n] of

cardinality 1 or n− 1, ordered by inclusion.

A poset is called a lattice if for any two elements x and y, there is a unique minimal element in

{z : z ≥ x, z ≥ y}, and a unique maximal element in {z : z ≤ x, z ≤ y}, These elements are called

respectively the join x ∨ y and the meet x ∧ y.
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2.2 Coxeter groups and Bruhat order

In this section we give the definition of a Coxeter group and the (strong) Bruhat order on a Coxeter

group, as well as one alternate characterization of the Bruhat order.

A Coxeter system is a pair (W,S), where W is a group, S is a set of generators, and W is given

by the presentation (st)m(s,t) = 1 for all s, t ∈ S, with the requirements that:

(i) m(s, s) = 1 for all s ∈ S, and

(ii) 2 ≤ m(s, t) ≤ ∞ for all s 6= t in S.

In other words, each generator is of order two, the generators are distinct, and they satisfy the

“pairwise order relations” given by (ii), or no relation if m(s, t) =∞. The Coxeter system is called

universal if m(s, t) =∞ for all s 6= t. We will refer to a “Coxeter group,” W with the understanding

that a generating set S has been chosen such that (W,S) is a Coxeter system. In what follows, W

or (W,S) will always refer to a fixed Coxeter system, and w will be an element of W .

Examples of finite Coxeter groups include the symmetric group, other Weyl groups of root

systems, and symmetry groups of regular polytopes. We will continue to follow the example of the

symmetric group S4 introduced at the beginning of Chapter 1. In this example, W is the symmetric

group S4 and S is the set containing the transpositions r := (1 2), s := (2 3) and t := (3 4). In the

language of Coxeter groups, S4 is the Weyl group A3, or the Coxeter system (A3, {r, s, t}), with

m(r, s) = m(s, t) = 3 and m(r, t) = 2.

Call a word w = s1s2 · · · sk with letters in S a reduced word for w if k is as small as possible. Call

this k the length of w, denoted l(w). We will use the symbol “1” to represent the empty word, which

corresponds to the identity element of W . Given any words a1 and a2 and given words b1 = stst · · ·

with l(b1) = m(s, t) and b2 := tsts · · · with l(b2) = m(s, t), the words a1b1a2 and a1b2a2 both stand

for the same element. Such an equivalence is called a braid move. A theorem of Tits says that given

any two reduced words a and b for the same element, a can be transformed into b by a sequence of

braid moves.

There are several equivalent definitions of Bruhat order. See [16] for a discussion of the equivalent

formulations. One definition is by the “Subword Property.” Fix a reduced word w = s1s2 · · · sk.

Then v ≤B w if and only if there is a reduced subword si1si2 · · · sij
corresponding to v such that

1 ≤ i1 < i2 < · · · < ij ≤ k. We will write v ≤ w for v ≤B w when the context is clear. Figure 2.1 is

an example of an interval in the Bruhat order on S4.

Bruhat order is ranked by length. The element w covers the elements which can be represented

by reduced words obtained by deleting a single letter from a reduced word for w. For example,

let w be the permutation 4321 ∈ S4, and choose the reduced word rsrtsr. Deleting single letters

produces the words srtsr, rrtsr, rstsr, rsrsr, rsrtr, and rsrts. However, not all of these are

reduced. Corresponding reduced words are, respectively, srtsr, tsr, rstsr, s, rst, and rsrts. Thus

4321 covers srtsr = 4312, rstsr = 4231, and rsrts = 3421.

A finite Coxeter group W has an element w0 of maximal length which is an involution, and

which gives rise an anti-automorphism w 7→ w0w of Bruhat order. The map w 7→ w0ww0 is
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Figure 2.1: The interval [1, srts] or [1234, 3412] in (S4, {r, s, t}).
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1234

an automorphism which permutes the generators S of W . For Sn the maximal element is the

permutation n(n− 1) · · · 21.

We will need the “lifting property” of Bruhat order, which can be proven easily using the Subword

Property.

Proposition 2.2.1. If w > sw and su > u, then the following are equivalent:

(i) w > u

(ii) sw > u

(iii) w > su

2.3 Polytopes

This section contains basic information about polytopes. A set C in Rd is convex if for any x, y ∈ C,

the straight line segment with endpoints x and y is contained in C. Given a set S ⊆ Rd, the convex

hull conv(S) of S is the intersection of all convex sets containing S. A hyperplane in Rd is the

solution set of the equation a · x = b, for some fixed vectors a and b, and the corresponding closed

halfspace is the solution set of the inequality a ·x ≤ b. A (convex) polytope P is the convex hull of a

finite number of points. Equivalently—although it takes some work to show it—a convex polytope

is a bounded set which is the intersection of a finite number of closed halfspaces. An affine subspace

of Rd is a subset of Rd which can be written as L+ v := {x+ v : x ∈ L} for some linear subspace L

and some vector v ∈ Rd. The affine span of a set S ⊆ Rd is the intersection of all affine subspaces

containing S. The dimension of a polytope P is the dimension of its affine span.

A hyperplane a · x = b is called a supporting hyperplane of P if a · x ≤ b for every point in P.

A face of P is any intersection of P with a supporting hyperplane. In particular ∅ is a face of P,

and any face of P is itself a convex polytope. By convention, P is considered to be a face of itself.

A facet of P is a face whose dimension is one less than the dimension of P. The face lattice of P
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is the set of faces of P partially ordered by inclusion. A priori, this is just a poset, but it is easily

checked that it is a lattice, where the meet operation is intersection. Two polytopes are of the same

combinatorial type if their face lattices are isomorphic.

We will need two geometric constructions on polytopes, the pyramid operation Pyr and the

vertex-shaving operation Sv. Given a polytope P of dimension d, Pyr(P ) is the convex hull of

the union of P with some vector v which is not in the affine span of P. This is unique up to

combinatorial type. In Section 2.1, a pyramid operator was defined on posets. The face poset of

Pyr(P) is just the pyramid of the face poset of P.

Consider a polytope P and a chosen vertex v. LetH = {a · x = b} be a hyperplane that separates

v from the other vertices of P . In other words, a ·v > b and a ·v′ < b for all vertices v′ 6= v. Then the

polytope Sv(P ) = P ∩{a · x ≤ b} is called the shaving of P at v. This is unique up to combinatorial

type. Every face of P—except v—corresponds to a face in Sv(P ), and in addition for every face

of P strictly containing v, there is an additional face of one lower dimension in Sv(P ). In Section

2.4 we describe how this operator can be extended to regular CW spheres, and in Section 3.4 we

describe the corresponding operator on posets.

2.4 CW complexes and PL topology

This section provides background material on CW complexes and PL topology which will be useful

in Section 3.2. More details about CW complexes, particularly as they relate to posets, can be

found in [7]. Additional details about PL topology can be found in [10, 51].

A set of n points in Rd is affinely independent if the smallest affine subspace containing them

has dimension n − 1. A simplex (plural: simplices) is a polytope which is the convex hull of an

affinely independent set S of points. The faces of the simplex are the affine hulls of subsets of S. A

geometric simplicial complex ∆ is a finite collection of simplices (called faces of the complex) such

that

(i) If σ ∈ ∆ and τ is a face of σ, then τ ∈ ∆.

(ii) If σ, τ ∈ ∆ and σ ∩ τ 6= ∅, then σ ∩ τ is a face of σ and of τ .

The zero-dimensional faces are called vertices . The underlying space |∆| of ∆ is the union in Rd of

the faces of ∆.

An abstract simplicial complex ∆ on a finite vertex-set V is a collection of subsets of V called

faces, with the following properties:

(i) Every singleton is a face.

(ii) Any subset of a face is another face.

Given a geometric simplicial complex ∆ with vertices V , the collection

{F ⊆ V : the convex hull of F is in ∆}
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is an abstract simplicial complex. The process can be reversed: given an abstract simplicial com-

plex ∆, there is a construction which produces a geometric simplicial complex whose underlying

abstract simplicial complex is exactly ∆. This geometric realization is unique up to homeomorphism,

so it makes sense to talk about the topology of an abstract simplicial complex. Two geometric sim-

plicial complexes are combinatorially isomorphic if their underlying abstract simplicial complexes

are isomorphic. If two complexes are combinatorially isomorphic then their underlying spaces are

homeomorphic, but the converse is not true.

Given simplicial complexes ∆ and Γ, say Γ is subdivision of ∆ if |Γ| = |∆| and if every face of

Γ is contained in some face of ∆. A simplicial complex is a PL d-sphere if it admits a simplicial

subdivision which is combinatorially isomorphic to some simplicial subdivision of the boundary of a

(d+1)-dimensional simplex. A simplicial complex is a PL d-ball if it admits a simplicial subdivision

which is combinatorially isomorphic to some simplicial subdivision of a d-dimensional simplex.

We now quote some results about PL balls and spheres. Some of these results appear topologi-

cally obvious but, surprisingly, not all of these statement are true with the “PL ” deleted. This is

the reason that we introduce PL balls and spheres, rather than dealing with ordinary topological

balls and spheres. Theorem 2.4.3 is known as Newman’s Theorem.

Theorem 2.4.1. [10, Theorem 4.7.21(i)] Given two PL d-balls whose intersection is a PL (d− 1)-

ball lying in the boundary of each, the union of the two is a PL d-ball.

Theorem 2.4.2. [10, Theorem 4.7.21(ii)] Given two PL d-balls whose intersection is the entire

boundary of each, the union of the two is a PL d-sphere.

Theorem 2.4.3. [10, Theorem 4.7.21(iii)] The closure of the complement of a PL d-ball embedded

in a PL d-sphere is a PL d-ball.

Given two abstract simplicial complexes ∆ and Γ, let ∆ ∗ Γ be the join of ∆ and Γ, a simplicial

complex whose vertex set is the disjoint union of the vertices of ∆ and of Γ, and whose faces are

exactly the sets F ∪G for all faces F of ∆ and G of Γ. Let Bd stand for a PL d-ball, and let Sd be

a PL d-sphere.

Proposition 2.4.4. [51, Proposition 2.23]

Bp ∗Bq ∼= Bp+q+1 (2.1)

Sp ∗Bq ∼= Bp+q+1 (2.2)

Sp ∗ Sq ∼= Sp+q+1 (2.3)

Here ∼= stands for PL homeomorphism, which we won’t define. In particular, Bp ∗ Bq is a PL

ball, etc.

The most important examples, for our purposes, of simplicial complexes are the order complexes

of finite posets. Given a poset P the order complex ∆(P ) is the abstract simplicial complex whose
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vertices are the elements of P and whose faces are the sets of elements which induce totally ordered

subposets. In other words, the faces are the chains of P , and ∆(P ) is sometimes called the chain

complex of P . The order complex of an interval [x, y] will be written ∆[x, y], rather than ∆([x, y]),

and similarly ∆(x, y), and so forth.

When P is a poset with a 0̂ and a 1̂ then statements about the topology of P are understood

to apply to the order complex of (0̂, 1̂) = P − {0̂, 1̂}. Thus for example, the statement that “P is a

PL sphere” means that ∆(0̂, 1̂) is a PL sphere. The following proposition follows immediately from

[10, Theorem 4.7.21(iv)]:

Proposition 2.4.5. If P is a PL sphere then any interval [x, y]P is a PL sphere.

An open cell is any topological space isomorphic to an open ball. A CW complex Ω is a Hausdorff

topological space with a decomposition as a disjoint union of cells, such that for each cell e, the

homeomorphism mapping an open ball to e is required to extend to a continuous map from the

closed ball to Ω. The image of this extended map is e, which is called a closed cell , specifically the

closure of e. The face poset of Ω is the set of closed cells, together with the empty set, partially

ordered by containment. The k-skeleton of Ω is the union of the closed cells of dimension k or less.

A CW complex is regular if all the closed cells are homeomorphic to closed balls.

Call P a CW poset if it is the face poset of a regular CW complex Ω. It is well known that in

this case Ω is homeomorphic to ∆(P − {0̂}). Björner [7] showed that

Theorem 2.4.6. A non-trivial poset P is a CW poset if and only if

(i) P has a minimal element 0̂, and

(ii) For all x ∈ P − {0̂}, the interval [0̂, x] is a sphere.

Given a CW poset, Björner constructs a complex Ω(P ) recursively by constructing the (k − 1)-

skeleton, and then attaching k-cells in a way that agrees with the order relations in P .

The polytope operations Pyr and Sv can also be defined on regular CW spheres. Both operations

preserve PL sphericity via Theorem 2.4.2. We give informal descriptions which are easily made

rigorous. Consider a regular CW d-sphere Ω embedded as the unit sphere in Rd+1. The new vertex

in the Pyr operation will be the origin. Each face of Ω is also a face of Pyr(Ω) and for each nonempty

face F of Ω there is a new face F ′ of Pyr(Ω), described by

F := {v ∈ Rd+1 : 0 < |v| < 1,
v

|v|
∈ F}.

The set {v ∈ Rd+1 : |v| > 1} ∪ {∞} is also a face of Pyr(Ω) (the “base” of the pyramid) where ∞ is

the point at infinity which makes Rd+1 ∪ {∞} a d+ 2-sphere.

Consider a regular CW sphere Ω and a chosen vertex v. Adjoin a new open cell to make Ω′, a

ball of one higher dimension. Choose S to be a small sphere |x− v| = ε, such that the only vertex

inside the sphere is v and the only faces which intersect S are faces which contain v. (Assuming

some nice embedding of Ω in space, this can be done.) Then Sv(Ω) is the boundary of the ball
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obtained by intersecting Ω′ with the set |x − v| ≥ ε. As in the polytope case, this is unique up to

combinatorial type. Every face of Ω, except v, corresponds to a face in Sv(Ω), and for every face of

Ω strictly containing v, there is an additional face of one lower dimension in Sv(Ω).

Given a poset P with 0̂ and 1̂, call P a regular CW sphere if P −{1̂} is the face poset of a regular

CW complex which is a sphere. In other words, P is a regular CW sphere if every lower interval

of P is a sphere. In light of Proposition 2.4.5 and Theorem 2.4.6, if P is a PL sphere, it is also a

CW sphere (but not conversely). Section 3.4 describes a construction on posets which corresponds

to Sv.

2.5 The cd-index of an Eulerian poset

In this section we give the definition of Eulerian posets, flag f-vectors, flag h-vectors, and the cd-

index, and quote results about the cd-indices of polytopes.

The Möbius function µ : {(x, y) : x ≤ y in P} → Z is defined recursively as follows:

µ(x, x) = 1, for all x ∈ P

µ(x, y) = −
∑

x≤z<y

µ(x, z) for all x < y in P.

The importance of the Möbius function derives from the following, whose simple proof can be found,

for example, in [55].

Proposition 2.5.1 (Möbius Inversion Formula). Let f, g : P → C. Under suitable conditions

on P (for example, if P is finite) then

g(x) =
∑

y≤x

f(y)

if and only if

f(x) =
∑

y≤x

µ(y, x)g(y).

The dual statement—obtained by replacing “≤” by “≥” everywhere—also holds.

A poset P is Eulerian if µ(x, y) = (−1)rank(y)−rank(x) for all intervals [x, y] ⊆ P . The resulting

simple form of the Möbius inversion formula is the key to the proofs of special properties of Eulerian

posets. It can be shown that P is Eulerian if and only if every interval [x, y] with rank(x, y) ≥ 1

has an equal number of elements of even rank and elements of odd rank [55, Exercise 3.69.a]. For

a survey of Eulerian posets, see [57].

Verma [59] gives an inductive proof that Bruhat order is Eulerian, by counting elements of even

and odd rank. Rota [50] proved that the face lattice of a convex polytope is an Eulerian poset (See

also [40]). A more general example of an Eulerian poset P is a CW sphere. In [7], Björner showed

that Bruhat intervals are CW spheres. Figure 2.2 shows the order complex ∆(1, srts), and the CW

complex Ω[1, srts]. The faces of Ω[1, srts] and the vertices of ∆(1, srts) are labeled with elements

of the interval. Note that the order complex is the barycentric subdivision of the CW sphere.
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Figure 2.2: The order complex ∆(1, srts) and associated CW complex Ω[1, srts]. The element srt

is the unbounded region in Ω[1, srts], or the vertex at infinity in ∆(1, srts).

srs sts

rts

ts

stsr

rs

rt t

s

r

srs

srt

sts

rts

ts

stsr

rs

rt t

s

r

We now proceed to define the cd-index. Let P be a graded poset, rank n + 1, with a minimal

element 0̂ and a maximal element 1̂. For a chain C in P−{0̂, 1̂}, define rank(C) = {rank(x) : x ∈ C}.

For any S ⊆ [n], define

αP (S) = #{chains C ⊆ P : rank(C) = S}.

The function αP : 2[n] → N is called the flag f-vector , because it is a refinement of the f-vector ,

which counts the number of elements of each rank.

Define a function βP : 2[n] → N by

βP (S) =
∑

T⊆S

(−1)|S−T |αP (T ), (2.4)

or equivalently, by inclusion-exclusion

αP (S) =
∑

T⊆S

βP (T ). (2.5)

The function β is called the flag h-vector because of its relation to the usual h-vector .

Bayer and Billera [2] proved a set of linear relations on the flag f-vector of an Eulerian poset,

which they called “Generalized Dehn-Sommerville relations,” because their proof follows the proof

of the Dehn-Sommerville relations for h-vectors of simplicial polytopes. They also proved that the

Generalized Dehn-Sommerville relations—now commonly called the Bayer-Billera relations—and

the relation αP (∅) = 1 are the complete set of affine relations satisfied by flag f-vectors of all

Eulerian posets.

Let Z〈a, b〉 be the vector space of ab-polynomials —polynomials over non-commuting variables a

and b with integer coefficients. Subsets S ⊆ [n] can be represented by monomials uS = u1u2 · · ·un ∈

Z〈a, b〉, where ui = b if i ∈ S and ui = a otherwise. Define ab-polynomials ΥP and ΨP to encode

20



the flag f-vector and flag h-vector respectively.

ΥP (a, b) :=
∑

S⊆[n]

αP (S)uS (2.6)

ΨP (a, b) :=
∑

S⊆[n]

βP (S)uS . (2.7)

The polynomial ΨP is commonly called the ab-index . There is no standard name for ΥP , but here

we will call it the flag index . It is easy to show that Equation (2.4) is equivalent to ΥP (a− b, b) =

ΨP (a, b).

The interval [1234, 3412], shown in Figure 2.1 has flag index:

Υ[1234,3412] = a3 + 4a2b+ 5aba+ 10ab2 + 3ba2 + 10bab+ 10b2a+ 20b3

Replacing a by a− b, one obtains:

Ψ[1234,3412] = a3 + 3a2b+ 4aba+ 2ab2 + 2ba2 + 4bab+ 3b2a+ b3

Encoding βP in a polynomial allows a simplification of the complicated Bayer-Billera relations.

Let c = a + b and d = ab + ba in Z〈a, b〉. The flag f-vector of a graded poset P satisfies the

Bayer-Billera relations if and only if ΨP (a, b) can be written as a polynomial in c and d with integer

coefficients, called the cd-index of P . This surprising fact was proven by Bayer and Klapper [3],

who credit J. Fine with suggesting it. The cd-index is monic, meaning that the coefficient of cn is

always 1. The existence and monicity of the cd-index constitute the complete set of affine relations

on the flag f-vector of an Eulerian poset. Setting the degree of c to be 1 and the degree of d to be

2, the cd-index of a poset of rank n + 1 is homogeneous of degree n. It is easy to show that the

number of cd-monomials of degree n− 1 is Fn, the n
th Fibonacci number, with F1 = F2 = 1. Thus

the affine span of flag f-vectors of Eulerian posets of degree n is Fn − 1 [2].

Continuing the previous example, we have:

Ψ[1234,3412] = c3 + 2cd+ dc.

The literature is divided on notation for the cd-index, due to two valid points of view as to what

the ab-index is. If one considers ΨP to be a polynomial function of non-commuting variables a and

b, one must consider the cd-index to be a different polynomial function in c and d, and give it a

different name, typically ΦP . On the other hand, if ΨP is a vector in a space of ab-polynomials,

the cd-index is the same vector, which happens to be written as a linear combination of monomials

in c and d. Thus one would call the cd-index ΨP . We will use either notation, depending on which

aspect of the cd-index we need to discuss: in particular, when we talk about inequalities on the

coefficients of the cd-index, we must use ΦP .

Aside from the existence and monicity of the cd-index, there are no additional affine relations

on flag f-vectors of polytopes. Bayer and Billera [2] and later Kalai [36] gave a basis of polytopes

whose flag f-vectors span Z〈c, d〉. A non-constructive proof of the existence of such a basis can be
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found in [5]. In the same paper there is a proof that no additional affine relations hold for the flag

f-vectors of zonotopes, and a proof that the integer span of cd-indices of zonotopes is Z〈c, 2d〉.
Much is also known about bounds on the coefficients of the cd-index of a polytope. A bound on

the cd-index implies bounds on α and β, because α and β can be written as positive combinations of

coefficients of the cd-index. The first consideration is the non-negativity of the coefficients. Stanley

[56] conjectured that the coefficients of the cd-index are non-negative whenever P is a homology

sphere (or in other words when P is a Gorenstein* poset). He also showed that the coefficients of

ΦP are non-negative for a class of CW-spheres which includes convex polytopes.

Ehrenborg and Readdy described how the cd-index is changed by the poset operations of pyramid

and vertex shaving. The following is a combination of Propositions 4.2 and 6.1 of [25].

Proposition 2.5.2. Let P be a graded poset and let a be an atom. Then

ΨPyr(P ) =
1

2



ΨP · c+ c ·ΨP +
∑

x∈P,0̂<x<1̂

Ψ[0̂,x] · d ·Ψ[x,1̂]



 (2.8)

ΨSa(P ) = ΨP +
1

2



ΨP · c− c ·ΨP +
∑

a<x<1̂

Ψ[a,x] · d ·Ψ[x,1̂]



 . (2.9)

Ehrenborg and Readdy also defined a derivation on cd-indices and used it to restate the formulas

in Proposition 2.5.2. The derivation G (called G′ in [25]) is defined by G(c) = d and G(d) = dc.

The following is a combination of Theorem 5.2 and Proposition 6.1 of [25].

Proposition 2.5.3. Let P be a graded poset and let a be an atom. Then

ΨPyr(P ) = c ·ΨP +G(ΨP )

ΨSa(P ) = ΨP +G(Ψ[a,1̂]).
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Chapter 3

Recursions for Bruhat intervals

3.1 Main results

In this chapter, we establish a fundamental structural recursion on intervals in the Bruhat order on

Coxeter groups. The recursion gives the isomorphism type of a Bruhat interval in terms of smaller

intervals, using some basic geometric operations, namely the operations of pyramid, vertex shaving

and a “zipping” operation. These operations preserve the Eulerian property and PL sphericity, and

have a simple effect on the cd-index. Thus we obtain a new inductive proof that Bruhat intervals

are PL spheres as well as recursions for the cd-index of Bruhat intervals:

Theorem 3.1.1. Let u < us, w < ws and u ≤ w.

If us 6∈ [u,w], then Ψ[u,ws] = PyrΨ[u,w], and Ψ[us,ws] = Ψ[u,w].

If us ∈ [u,w], then

Ψ[u,ws] = PyrΨ[u,w] −
∑

v∈(u,w):vs<v

Ψ[u,v] · d ·Ψ[v,w]

=
1

2



Ψ[u,w] · c+ c ·Ψ[u,w] +
∑

v∈(u,w)

σs(v)Ψ[u,v] · d ·Ψ[v,w]





Ψ[us,ws] = SusΨ[u,w] −
∑

v∈(us,w):vs<v

Ψ[us,v] · d ·Ψ[v,w]

= Ψ[u,w] +
1

2



Ψ[us,w] · c− c ·Ψ[us,w] +
∑

v∈(us,w)

σs(v)Ψ[us,v] · d ·Ψ[v,w]



 .

Here σs(v) := l(vs)− l(v). This recursive formula leads to a proof that the cd-indices of Bruhat

intervals span the space of cd-polynomials, and motivates a conjectured upper bound for the cd-

indices of Bruhat intervals. The structural recursion is used to construct Bruhat intervals which are

the face lattice of the duals of stacked polytopes [37]. Based on computer calculations and on the

formulas in Theorem 3.1.1, we conjecture:
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Conjecture 3.1.2. The coefficientwise maximum of all cd-indices Φ[u,v] with l(u) = k and l(v) =

d+k+1 is attained on a Bruhat interval which is isomorphic to a dual stacked polytope of dimension

d with d+ k + 1 facets.

The conjectured lower bound (non-negativity) on the coefficients of the cd-indices of Bruhat

intervals was made, in a more general setting, by Stanley [56]. We show that if the conjecture

on non-negativity holds, then the cd-index of any lower Bruhat interval is bounded above by the

cd-index of a Boolean algebra. Since the flag h-vectors of Bruhat intervals are non-negative, we

are able to prove that the flag h-vectors of lower Bruhat intervals are bounded above by the flag

h-vectors of Boolean algebras.

The chapter is organized as follows: In Section 3.2, the zipping operation is introduced, and its

basic properties are proven. Section 3.3 contains the definition of, and a basic proposition about

order-projections, which will be used in Section 3.4 to prove the structural recursion. Section 3.5

gives constructions of Bruhat intervals which are isomorphic to the face lattices of certain convex

polytopes, namely dual stacked polytopes and simplices. Section 3.6 contains the proof of Theorem

3.1.1 and Section 3.7 uses Theorem 3.1.1 to determine the affine span of cd-indices of Bruhat

intervals. In Section 3.8, there is a discussion of conjectured bounds on the coefficients of the cd-

index of a Bruhat interval, and in Section 3.9, recursions on other poset invariants are derived from

Theorem 3.1.1.

3.2 Zipping

In this section we introduce the zipping operation and prove some of its important properties. In

particular, zipping will be part of a new inductive proof that Bruhat intervals are spheres and

thus Eulerian. A zipper in a poset P is a triple of distinct elements x, y, z ∈ P with the following

properties:

(i) z covers x and y but covers no other element.

(ii) z = x ∨ y.

(iii) D(x) = D(y).

Call the zipper proper if z is not a maximal element. If (x, y, z) is a zipper in P and [a, b] is an

interval in P with x, y, z ∈ [a, b] then (x, y, z) is a zipper in [a, b].

Given P and a zipper (x, y, z) one can “zip” the zipper as follows: Let xy stand for a single new

element not in P . Define P ′ = (P − {x, y, z}) ∪ {xy}, with a binary relation called ¹, given by:

a ¹ b if a ≤ b

xy ¹ a if x ≤ a or if y ≤ a

a ¹ xy if a ≤ x or (equivalently) if a ≤ y

xy ¹ xy
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For convenience, [a, b] will always mean the interval [a, b]≤ in P and [a, b]¹ will mean an interval

in P ′. In each of the following propositions, P ′ is obtained from P by zipping the proper zipper

(x, y, z), although some of the preceding results are true even when the zipper in not proper.

Proposition 3.2.1. P ′ is a poset under the partial order ¹.

Proof. One sees immediately that ¹ is reflexive and that antisymmetry holds in P ′−{xy}. If xy ¹ a

and a ¹ xy, but a 6= xy, then a ∈ P − {x, y, z}. We have a ≤ x and a ≤ y. Also, either x ≤ a

or y ≤ a. By antisymmetry in P , either a = x or a = y. This contradiction shows that a = xy.

Transitivity follows immediately from the transitivity of P except perhaps when a ¹ xy and xy ¹ b.

In this case, a ≤ x and a ≤ y. Also, either x ≤ b or y ≤ b. In either case, a ≤ b and therefore

a ¹ b.

Proposition 3.2.2. If a ¹ xy then µP ′(a, xy) = µP (a, x) = µP (a, y). If a ¹ b ∈ P ′ with a 6= xy,

then µP ′(a, b) = µP (a, b).

Suppose [a, b]¹ is any non-trivial interval in P ′. If a 6¹ xy, then [a, b]¹ = [a, b]≤. If b = xy, then

[a, b]¹ ∼= [a, x]≤. If b 6= xy and b 6> z, then [a, b]≤ does not contain both x and y, and we obtain

[a, b]¹ from [a, b]≤ by replacing x or y by xy if necessary. Thus in the proofs that follow, one needs

only to check two cases: the case where a ≺ xy and b > z and the case where a = xy.

Proof of Proposition 3.2.2. Let a ¹ b with a 6= xy. One needs only to check the case where a ≺ xy

and b > z. This is done by induction on the length of the longest chain from z to b. If b ·>z then

µP (a, b) = −µP (a, z)− µP (a, x)− µP (a, y)−
∑

a≤p<b:p6=x,y,z

µP (a, p)

=
∑

a≤p<x

µP (a, p)−
∑

a≤p<b:p6=x,y,z

µP (a, p)

= −µP ′(a, xy)−
∑

a¹p≺b:p6=xy

µP ′(a, p)

= µP ′(a, b).

Here the second line is obtained by properties (i) and (iii). If b does not cover z, use the same

calculation, employing induction to go from the second line to the third line.

Proposition 3.2.3. If xy ¹ b ∈ P ′, then µP ′(xy, b) = µP (x, b) + µP (y, b) + µP (z, b).
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Proof. In light of Proposition 3.2.2, one can write:

µP ′(xy, b) = −
∑

xy≺p¹b

µP ′(p, b)

=











−
∑

p:x<p≤b
or

y<p≤b

µP (p, b)











+ µP (z, b)

=



−
∑

x<p≤b

µP (p, b)−
∑

y<p≤b

µP (p, b) +
∑

z≤p≤b

µP (p, b)



+ µP (z, b)

= µP (x, b) + µP (y, b) + µP (z, b).

The following two corollaries follow trivially from Propositions 3.2.2 and 3.2.3 and the observation

that if P is ranked, then P ′ inherits a rank function.

Corollary 3.2.4. If P is thin, then so is P ′

Corollary 3.2.5. If P is Eulerian, then so is P ′.

Theorem 3.2.6. P has a cd-index if and only if P ′ has cd-index. The cd-indices are related by:

ΨP ′ = ΨP −Ψ[0̂,x]≤
· d ·Ψ[z,1̂]≤

.

Proof. We subtract from ΥP the chains which disappear under the zipping. First subtract the terms

which came from chains through x and z. Any such chain is a chain in [0̂, x]P concatenated with a

chain in [z, 1̂]P . So the terms subtracted off are Υ[0̂,x]P
·b ·b ·Υ[z,1̂]. Then subtract a similar term for

chains through y and z. In fact, by condition (iii) of the definition of a zipper, the term for chains

through y and z is identical to the term for chains through x and z. Subtract Υ[0̂,x]P
· a · b · Υ[z,1̂]

for the chains which go through z but skip the rank below z. Finally, x is identified with y, so

there is a double-count which must be subtracted off. If two chains are identical except that one

goes through x and the other goes through y, then they are counted twice in P but only once in

P ′. Because x ∨ y = z, if such a pair of chains include an element whose rank is rank(z), then that

element is z. But the chains through z have already been subtracted, so we need to subtract off

Υ[0̂,x]P
b · a ·Υ[z,1̂]. We have again used condition (iii) here. Thus:

ΥP ′ = ΥP −Υ[0̂,x]P
(2bb+ ab+ ba) ·Υ[z,1̂]P

. (3.1)

Replacing a by a− b one obtains:

ΨP ′ = ΨP −Ψ[0̂,x]P
· (ab+ ba) ·Ψ[z,1̂]P

(3.2)

= ΨP −Ψ[0̂,x]P
· d ·Ψ[z,1̂]P

. (3.3)
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Theorem 3.2.7. If P is a PL sphere, then so is P ′.

Proof. To avoid tedious repetition, we will omit “PL” throughout the proof. All spheres and balls

are assumed to be PL.

Suppose P is a k-sphere. Let ∆xyz ⊂ ∆(0̂, 1̂) be the simplicial complex whose facets are maximal

chains in P − {0̂, 1̂} passing through x, y or z. Our first goal is to prove that ∆xyz is a ball.

Let ∆x ⊂ ∆(0̂, 1̂) be the simplicial complex whose facets are maximal chains in (0̂, 1̂) through x.

Similarly ∆y. One can think of ∆x as ∆(0̂, x) ∗ x ∗∆(x, 1̂). Thus, by Proposition 2.4.4, ∆x is a k-

ball, and similarly, ∆y. Let Γ = ∆x ∩∆y. Then Γ is the complex whose facets are almost-maximal

chains that can be completed to maximal chains either by adding x or y. These are the chains

through z which have elements at every rank except at the rank of x. Thus Γ is ∆(0̂, x)∗z ∗∆(z, 1̂),

a (k − 1)-ball, and Γ lies in the boundary of ∆x, because there is exactly one way to complete a

facet of Γ to a facet of ∆x, namely by adjoining x. Similarly, Γ lies in the boundary of ∆y. So by

Proposition 2.4.1, ∆xyz = ∆x ∪∆y is a k-ball.

Consider ∆((0̂, 1̂) − {x, y, z}), which is the closure of ∆(0̂, 1̂) − ∆xyz. By Proposition 2.4.3,

∆((0̂, 1̂)−{x, y, z}) is also a k-ball. Also consider ∆((0̂, 1̂)¹−{xy}), which is isomorphic to ∆((0̂, 1̂)−

{x, y, z}). The boundary of ∆((0̂, 1̂)¹ − {xy}) is a complex whose facets are chains c with the

property that for each c there is a unique element of (0̂, 1̂)¹ − {xy} that completes c to a maximal

chain. However, since (0̂, 1̂)¹ is thin, it has the property that any chain of length k − 1 can be

completed to a maximal chain in (0̂, 1̂)¹ in exactly two ways. Therefore every facet of the boundary

of ∆((0̂, 1̂)¹−{xy}) is contained in a chain through xy. So ∆((0̂, 1̂)¹) is a k-ball ∆((0̂, 1̂)¹−{xy})

union the pyramid over the boundary of ∆((0̂, 1̂)¹ − {xy}). Thus by Proposition 2.4.2, ∆((0̂, 1̂)¹)

is a k-sphere.

In the case where P is thin, the conditions for a zipper can be simplified.

Proposition 3.2.8. If P is thin, then (i) implies (iii). Thus (x, y, z) is a zipper if and only if it

satisfies conditions (i) and (ii).

Proof. Suppose condition (i) but suppose that [0̂, x) 6= [0̂, y). Then without loss of generality x

covers some a which y does not cover. Since z covers no element besides x and y, [a, z] is a chain of

length 2, contradicting thinness.

There is an alternate simplification when P is a CW poset.

Proposition 3.2.9. If P is a CW poset, z covers x and y and (x, y, z) satisfies (iii), then (x, y, z)

satisfies (i). Thus (x, y, z) is a zipper if and only z covers x and y and (x, y, z) satisfies conditions

(ii) and (iii).

Proof. Both of the intervals (0̂, x) = (0̂, y) and (0̂, z) are homeomorphic to spheres. The induced

subposet (0̂, x) ∪ {x, y} ⊆ (0̂, z) is a suspension of a sphere, so it is already homeomorphic to a

sphere of the same dimension as (0̂, z). Thus (0̂, x) ∪ {x, y} = (0̂, z)
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3.3 Order-projections

In this section, we define order-projections and fiber posets, which will be convenient for proving

the structural recursion on Bruhat intervals. Let P and Q be posets, with some map η : P → Q.

Consider the set P̄ := {η−1(q) : q ∈ Q} of fibers of η, and define a relation ≤P̄ on P̄ by F1 ≤P̄ F2 if

there exist a ∈ F1 and b ∈ F2 such that a ≤P b. If ≤P̄ is a partial order, P̄ is called the fiber poset

of P with respect to η. In this case, there is a surjective order-preserving map ν : P → P̄ given by

ν : a 7→ η−1(η(a)), and an injective order-preserving map η̄ : P̄ → Q such that η = η̄ ◦ ν.

Call η an order-projection if it is order-preserving and has the following property: For all q ≤ r

in Q, there exist a ≤ b ∈ P with η(a) = q and η(b) = r. In particular, an order projection is

surjective.

Proposition 3.3.1. Let η : P → Q be an order-projection. Then

(i) P̄ is a fiber poset.

(ii) η̄ is an order-isomorphism.

Proof. Assertion (i) is just the statement that ≤P̄ is a partial order. The reflexive property is trivial.

Let A = η−1(q) and B = η−1(r) for q, r ∈ Q. If A ≤P̄ B and B ≤P̄ A, we can find a1, a2, b1, b2 with

η(a1) = η(a2) = q, η(b1) = η(b2) = r, a1 ≤ b1 and b2 ≤ a2. Because η is order-preserving, q ≤ r

and r ≤ q, so q = r and therefore A = B. Thus the relation is anti-symmetric.

To show that ≤P̄ is transitive, suppose A ≤P̄ B and B ≤P̄ C. Then there exist a ∈ A,

b1, b2 ∈ B and c ∈ C with η(a) = q, η(b1) = η(b2) = r, η(c) = s a ≤ b1 and b2 ≤ c. Because η is

order-preserving, q ≤ r ≤ s. By hypothesis, one can find a′ ≤ c′ ∈ P with η(a′) = q and η(c′) = s.

So A ≤P̄ C.

Since η is surjective, η̄ is an order-preserving bijection. Let q ≤ r in Q. Then, because η is an

order-projection, there exist a ≤ b ∈ P with η(a) = q and η(b) = r. So η̄−1(q) = η−1(q) ≤ η−1(r) =

η̄−1(r) in P̄ . Thus η̄−1 is order-preserving.

3.4 Building intervals in Bruhat order

This section states and proves the structural recursion for Bruhat intervals. When s ∈ S, u < us

and w < ws, define a map η : [u,w]× [1, s]→ [u,ws], as follows:

η(v, 1) = v

η(v, s) =

{

vs if vs > v

v if vs < v.

To show that η is well-defined, let v ∈ [u,w]. Then η(v, 1) = v ∈ [u,ws] because ws > w ≥ v ≥ u.

Either η(v, s) = v ∈ [u,ws] or η(v, s) = vs. In the latter case, vs > v, so u < vs ≤ ws by the lifting

property.

Proposition 3.4.1. If u < us and w < ws, then η : [u,w]× [1, s]→ [u,ws] is an order-projection.

28



Proof. To check that η is order-preserving, suppose (v1, a1) ≤ (v2, a2) in [u,w]× [1, s]. We have to

break up into cases to check that η(v1, a1) ≤ η(v2, a2).

Case 1: a1 = 1.

If a2 = 1 as well, η(v1, a1) = v1 ≤ v2 = η(v2, a2). If a2 = s, then η(v2, a2) is either v2

with v2 ≥ v or it is v2s with v2s > v2 ≥ v1.

Case 2: a1 = s.

So η(v1, a1) is either v1, with v1 > v1s or it is v1s with v1s > v1. We must also

have a2 = s, so η(v2, a2) is either v2 with v2 > v2s or it is v2s with v2s > v2. If

η(v1, a1) = v1 then η(v1, a1) ≤ v2 ≤ η(v2, a2). If η(v1, a1) = v1s and η(v2, a2) = v2,

we have v1s > v1 and v2 > v2s. By hypothesis, v1 < v2, so by the lifting property

η(v1, a1) = v1s < v2 = η(v1, a1). If η(v1, a1) = v1s and η(v2, a2) = v2s then v1s > v1 and

v2s > v2, so by the lifting property vs ≤ v2s.

It will be useful to identify the inverse image of an element v ∈ [u,ws]. The inverse image is:

η−1(v) =

{

{(v, 1)} if v < vs

{(v, 1), (vs, s), (v, s)} if v > vs,

provided that these elements are actually in [u,w] × [1, s]. In the case where v < vs, we have

u ≤ v ≤ w, where the second inequality is by the lifting property. So (v, 1) is indeed an element of

[u,w] × [1, s]. In the case where vs < v, we have by hypothesis us > u, so by lifting, vs ≥ u. Also

by lifting, since ws > w and v > vs, we have w > vs. So (vs, s) ∈ [u,w]× [1, s].

Now, suppose x1 ≤ x2 ∈ [u,ws]. To finish the proof that η is an order-projection, we must find

elements (v1, a1) ≤ (v2, a2) ∈ [u,w]× [1, s] with η(v1, a1) = x1 and η(v2, a2) = x2. Consider 4 cases:

Case 1: x1 < x1s and x2 < x2s.

By the inverse-image argument of the previous paragraph, x1, x2 ∈ [u,w], so η(x1, 1) =

x1, η(x2, 1) = x2 and (x1, 1) ≤ (x2, 1).

Case 2: x1 < x1s and x2 > x2s.

By the previous paragraph, x1, x2s ∈ [u,w]. Again, η(x1, 1) = x1, and η(x2s, s) = x2.

By lifting, x1 ≤ x2s, so (x1, 1) ≤ (x2s, s).

Case 3: x1 > x1s and x2 > x2s.

We have x1s, x2s ∈ [u,w], η(x1s, s) = x1 and η(x2s, s) = x2. By lifting, x1s ≤ x2s, so

(x1s, s) ≤ (x2s, s).

Case 4: x1 > x1s and x2 < x2s.

We have x2 ∈ [u,w]. Since u ≤ x1 ≤ x2, x1 ∈ [u,w] as well. So η(x1, 1) = x1,

η(x2, 1) = x2 and (x1, 1) ≤ (x2, 1).

In light of the previous section, η induces an isomorphism η̄ between [u,ws] and a poset derived

from [u,w]× [1, s], as follows: For every v ∈ [u,w] with vs < v, “identify” (v, 1), (vs, s) and (v, s) to
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make a single element. Since (v, s) covers (v, 1) and (vs, s) we can also think of η as deleting (v, s)

and identifying (v, 1) with (vs, s).

Figure 3.1: The map η : [1, srt] × [1, s] → [1, srts], where [1, srt] and [1, srts] are intervals in

(S4, {r, s, t}). All elements (u, v) map to uv except (s, s), which maps to s.

(srt,s)

(st,s)(rt,s)(sr,s)(srt,1)

(t,s)(s,s)(r,s)(st,1)(rt,1)(sr,1)

(1,s)(t,1)(s,1)(r,1)

(1,1)

srts

stsrtssrssrt

tsrsstrtsr

tsr

1

The map η induces a map (also called η) on the CW-spheres associated to Bruhat intervals, as

illustrated in Figure 3.2.

Figure 3.2: η : Ω([1, srt]× [1, s])→ Ω[1, srts].

(sr,s)
(st,s)

(rt,s)
(t,s)

(s,s)

(r,s)

(st,1)(sr,1)

(rt,1)

(1,s)
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Proposition 3.4.2. Let u < us, w < ws and us 6≤ w. Then vs > v for all v ∈ [u, v], and η is an

isomorphism.

Proof. Suppose for the sake of contradiction that there is a v ∈ [u,w] with vs < v. Since us > u

and u ≤ v, by lifting, v ≥ us. By transitivity, w ≥ us. This contradiction shows that that vs > v

for all v ∈ [u, v].
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Now, looking back at the proof of Proposition 3.4.1, we see that

η−1(v) =

{

{(v, 1)} if v < vs

{(vs, s)} if v > vs,

because in the v > vs case, the other two possible elements of η−1(v) don’t exist. Thus the map ν

is an order-isomorphism and therefore η = η̄ ◦ ν is also an order-isomorphism.

The following corollary is easy.

Corollary 3.4.3. If u < us, w < ws and us 6≤ w the map ζ : [u,w] → [us,ws] with ζ(v) = vs is

an isomorphism.

We would also like to relate the interval [us,ws] to [u,w] in the case where us ≤ w. To do this,

we need an operator on posets corresponding to vertex-shaving on polytopes or CW spheres. Let P

be a poset with 0̂ and 1̂, and let a be an atom of P . The shaving of P at a is an induced subposet

of P × [0̂, a] given by:

Sa(P ) =
((

P − {0̂, a}
)

× {a}
)

∪
(

(a, 1̂]× {0̂}
)

∪ {(0̂, 0̂)}.

We can also describe Sv(P ) as follows: Let P ′ be obtained from P × [0̂, a] by zipping the zipper

((a, 0̂), (0̂, a), (a, a)). Denote by a the element created by the zipping. Then Sv(P ) is the interval

[a, (1̂, a)] in P ′. Figures 3.3 and 3.4 illustrate the operation of shaving.

Let s ∈ S, u < us, w < ws and us ≤ w. Define a map θ : Sus[u,w]→ [us,ws] as follows. Starting

with [u,w] × [1, s], zip ((us, 1), (u, s), (us, s)), call the new element us, and identify Sus[u,w] with

the interval [us, (w, s)] in the zipped poset. Now define:

θ(us) = us

θ(v, 1) = v if v ∈ (us,w]

θ(v, s) =

{

vs if vs > v

v if vs < v.

To check that θ is well-defined, begin by noting that θ(us) ∈ [us,ws], and if v ∈ (us,w], then

θ(v, 1) = v ∈ [us,ws]. If v ∈ [u,w] − {u, us}, there are two possibilities, θ(v, s) = vs > v or

θ(v, s) = v > vs. In either case, us < θ(vs) < ws by lifting. So θ is well-defined.

Proposition 3.4.4. The map θ : Sus[u,w]→ [us,ws] is an order-projection.

Proof. Notice that θ, restricted to Sus[u,w] − {us} is just η restricted to an induced subposet.

Recall that in the proof of Proposition 3.4.1, it was shown that for v ∈ [u,ws], if v < vs then

(v, 1) ∈ η−1(v) and if v > vs then (vs, s) ∈ η−1(v). The existence of these elements of η−1(v) was

used to check that η is an order-projection. The same argument accomplishes most of the present

proof. For us < x1 ≤ x2 ≤ w, we are done, and it remains to check that for us ≤ x ≤ w, there

exist elements a ≤ b in Sus[u,w] with θ(a) = us and θ(b) = x. This is easily accomplished by

setting a = us ∈ Sus[u,w] and letting b be an element of η−1(x) = θ−1(x). If x = us, then set

b = us ∈ Sus[u,w].
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Figure 3.3: The construction of Ss([1, rst]) from [1, rst] × [1, s], where [1, srt] is an interval in

(S4, {r, s, t}). The posets are [1, rst], [1, rst]× [1, s], the same poset with (s, 1), (1, s), (rs, s) zipped,

and Ss([1, rst]).
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Figures 3.5 and 3.6 illustrate the map θ and the corresponding map on CW spheres.

Since η is an order-projection, [u,ws] is isomorphic to the fiber poset of [u,w]× [1, s] with respect

to η. Similarly, [us,ws] is isomorphic to the fiber poset of Sus[u,w] with respect to θ. We will show

that one can pass to the fiber poset in both cases by a sequence of zippings.

Order the set {v ∈ (u,w) : vs < v} linearly by an extension of the partial order from [u,w], such

that the elements of rank i in [u,w] precede the elements of rank i + 1 for all i. Write this order

as v1, v2, . . . , vk. Define P0 = [u,w] × [1, s] and inductively define Pi to be the poset obtained by

zipping ((vi, 1), (vis, s), (vi, s)) in Pi−1. We show inductively that this is indeed a proper zipping.

First, notice that (vi, 1), (vis, s) and (vi, s) are indeed elements of Pi−1. The element (vi, s) has

not been deleted yet, and we have not identified (vi, s) with any element because it is at a rank

higher than we have yet made identifications. The only elements ever deleted are of the form (x, s)

where x > xs, so (vi, 1) and (vis, s) have not been deleted. The only identification one could make

involving (vi, 1) and (vis, s) is to identify them to each other, and that has not happened yet. We
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Figure 3.4: The CW-spheres associated to the posets of Figure 3.3.
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check the properties in the definition of a zipper: Properties (i) and (ii) hold in P0 and therefore in

Pi−1 because we have made no identifications involving (vi, 1), (vis, s) and (vi, s) or higher-ranked

elements. To check property (iii), keep in mind that vi > vis.

Suppose x < (vi, 1) in Pi−1. The following cases are possible for x:

Case 1: The element x corresponds to a single (uncombined) element of P0.

We must have x = (v, 1) with v < vi and v < vs. By lifting, v ≤ v1s, so x < (vis, s).

Case 2: The element x corresponds to a pair of identified elements.

These elements must be (v, 1) and (vs, s) for some v with v > vs. Thus v < vi, so by

lifting, vs < vis and thus x < (vis, s).

We have shown that [0̂, (vi, 1)) ⊆ [0̂, (vis, s)).

Suppose x < (vis, s) in Pi−1. Again, break up into cases based on the identity of x.

Case 1: x corresponds to a single element (v, 1) of P0, with v ≤ vis.

By transitivity, v ≤ vi and thus x < (vi, 1).

Case 2: x is (v, s) in P0 with v < vis.
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Figure 3.5: The map θ : Ss([1, rst]) → [s, rsts], where [1, srt] and [s, rsts] are intervals in

(S4, {r, s, t}). All elements (u, v) map to uv except (rs, s), which maps to rs.
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Figure 3.6: θ : Ω(Ss([1, rst]))→ Ω[s, rsts].
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Since x was not deleted previously, v < vs. Since x was not identified with (vs, 1), we

know that vs 6∈ [u,w], and specifically that vs 6≤ w. However, by lifting, vs ≤ vi and by

hypothesis vi ≤ w. This contradiction shows that Case 2 cannot occur.

Case 3: x is a pair of identified elements.

The two elements are (v, 1) and (vs, s) with v > vs. Since x < (vis, s), either vis > vs

or vis ≥ v. If vis > vs then by lifting vi > v, If vis ≥ v, then by transitivity, vi > v. So

x < (vi, 1).

Thus [0̂, (vi, 1)) = [0̂, (vis, s)). The zipper is proper because (vi, s) < (w, s) in P0 and thus in Pi−1.

By definition, Sus[u,w] is an interval in the poset P1 defined above. Specifically, P1 was obtained

from [u,w] × [1, s] by zipping ((us, 1), (u, s), (us, s)). Let us be the element of P1 resulting from

identifying (us, 1) with (u, s). Then Sus[u,w] is isomorphic to the interval [us, (w, s)] in P1. The

remaining deletions and identifications in the map θ are really zippings in the Pi. Therefore they

are zippings in the Pi restricted to [us, (w, s)].

We have proven the following:

Theorem 3.4.5. Let ws > w, us > u and u ≤ w. If us 6∈ [u,w] then [u,ws] ∼= [u,w] × [1, s] and

[us,ws] ∼= [u,w]. If us ∈ [u,w], then [u,ws] can be obtained from [u,w] × [1, s] by a sequence of

zippings, and [us,ws] can be obtained from Sus[u,w] by a sequence of zippings.
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Corollary 3.4.6. Bruhat intervals are PL spheres.

Proof. One only needs to prove the corollary for lower intervals, because by Proposition 2.4.5 it

will then hold for all intervals. Intervals of rank 1 are empty spheres. It is easy to check that a

lower interval under an element of rank 2 is a PL 0-sphere. Given the interval [1, w] with l(w) ≥ 3,

there exists s ∈ S such that ws < w. Then [1, w] can be obtained from [1, ws]× [1, s] by a sequence

of zippings. By induction [1, ws] is a PL sphere, and thus [1, ws] × [1, s] is as well. By repeated

applications of Theorem 3.2.7, [1, w] is a PL sphere.

The following observation will be helpful in Section 3.6, when Theorem 3.4.5 is combined with

Theorem 3.2.6.

Proposition 3.4.7. For 1 ≤ i ≤ k,

[(u, 1), (vi, 1)]Pi−1
∼= [(u, 1), (vi, 1)]P0

[(vi, s), (w, s)]Pi−1
∼= [(vi, s), (ws)]P0

Proof. The second statement is obvious because of the way the vj were ordered. For the first

statement, there is the obvious order-preserving bijection between the two intervals. The only

question is whether the right-side has any extra order relations. Extra order relations will occur if

for some v with v > vs, there exists (x, 1) with (x, 1) ≤ (vs, s) but (x, 1) 6≤ (v, 1). This is ruled out

by transitivity.

3.5 Polytopal Bruhat intervals

In this section we explore the problem of finding Bruhat intervals which are isomorphic to the

face lattices of convex polytopes. For convenience, we will say that such intervals “are” polytopes.

Specifically we construct, in the universal Coxeter groups, Bruhat intervals which are dual stacked

polytopes. Also, we consider the question of finding large simplices (Boolean algebras) as intervals

in a given finite Coxeter group.

A polytope is said to be dual stacked if it can be obtained from a simplex by a series of vertex-

shavings. As the name would indicate, these polytopes are dual to the stacked polytopes [37] which

we will not define here. There are Bruhat intervals which are dual stacked polytopes. Let W be

a universal Coxeter group with Coxeter generators S := {s1, s2, . . . sd+1}. Define Ck (for “cyclic

word”) to be the word s1s2 · · · sk, where the subscript k is understood to mean k (mod d+ 1). So

for example, if d = 2, then C7 = s1s2s3s1s2s3s1. In a universal Coxeter group, every group element

corresponds to a unique reduced word. Thus we will use these words interchangeably with group

elements.

Proposition 3.5.1. The interval [Ck, Cd+k+1] in W is a dual stacked polytope of dimension d with

d+ k + 1 facets.
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Proof. The proof is by induction on k. For k = 0, the interval is [1, s1s2 · · · sd+1], and because

all subwords of s1s2 · · · sd+1 are distinct group elements, this interval is a Boolean algebra—the

face poset of a d dimensional simplex. For k > 0, the interval [Ck, Cd+k+1] is obtained from the

interval [Ck−1, Cd+k] by shaving the vertex Ck and then possibly by performing a sequence of

zippings. By induction, [Ck−1, Cd+k] is a dual stacked polytope of dimension d with d + k facets.

The zippings correspond to elements of (Ck, Cd+k) which are shortened on the right by sd+k+1.

Let v ∈ (Ck, Cd+k), and let v also stand for the unique reduced word for the element v. Since

every element of W has a unique reduced word, the fact that Ck < v means that v contains Ck as a

subword. But the only subword Ck of Cd+k is the first k letters of Cd+k. Thus v is a subword of Cd+k

consisting of the first k letters and at least one other letter. Now, sk 6∈ {sk+1, sk+2, . . . , sd+k}, so v

ends in some generator other than sk, and therefore, v is not shortened on the right by sk = sd+k+1.

Thus there are no zippings following the shaving, and so [Ck, Cd+k+1] is a dual stacked polytope of

dimension d with d+ k + 1 facets.

Next, consider the question: What is the largest rank of Boolean algebra which occurs as an

interval in a given finite Coxeter group? For a poset P , let Bool(P ) be the largest rank of Boolean

algebra which occurs as an interval in P .

Theorem 3.5.2.

Bool(An) ≥ n+

⌊

n− 1

2

⌋

Bool(Bn) ≥ n+

⌊

n− 1

2

⌋

Bool(Dn) ≥ n+
⌊n

2

⌋

Bool(E6) ≥ 8

Bool(E7) ≥ 10

Bool(E8) ≥ 11

Bool(F4) ≥ 5

Bool(H3) ≥ 4

Bool(H4) ≥ 5

We would guess that these are the largest possible, but we do not have a proof. Theorem 3.5.2

provides lower bounds for the order dimensions of these finite Coxeter groups, but it will be seen in

Chapter 4 that these bounds are very low.

The proof of Theorem 3.5.2 occupies the remainder of this section. Consider w ∈W represented

by a word

a = d1t1d2t2 · · · dktkdk+1.

where the di are words, the ti are single generators, and b = t1t2 · · · tk is a word for some element

u. Call b a Boolean subword of a if:
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(i) For each i ∈ [k], the letter ti appears exactly once in a.

(ii) If for i ≤ j some letter s occurs in both di and dj , then there is an n with i ≤ n < j such that

m(s, tn) > 2. In particular, for each i ∈ [k + 1], no letter appears in di more than once.

Condition (i) implies that b is reduced, and condition (ii) implies that each di is reduced. Write wi

for the element represented by di.

Proposition 3.5.3. If b is a Boolean subword of a, then [u,w] is a Boolean algebra of rank l(a)−l(b)

and in particular a is a reduced word.

Proof. If [u,w] is a Boolean algebra of rank l(a)− l(b), then since b is reduced, l(w) = l(a), so a is

reduced. The claim that [u,w] is a Boolean algebra is proven by induction on k and l(wk+1).

If k = 0, [u,w] = [1, w1], and by (ii) the letters in d1 are all distinct, so [u,w] is a Boolean

algebra of the correct rank. If k > 0 and l(wk+1) = 0, let a− be the word obtained by deleting the

last letter, tk, from a, and let w− be the element corresponding to a−. So [u,w] = [t1t2 · · · tk, w−tk].

By (i) and (ii), tk is distinct from all generators in a−, so t1t2 · · · tk 6≤ w−. For the same reason,

t1t2 · · · tk−1 < t1t2 · · · tk and w− < w−tk. By Corollary 3.4.3, [t1t2 · · · tk, w−tk] ∼= [t1t2 · · · tk−1, w−].

By induction on k, [t1t2 · · · tk−1, w−] is a Boolean algebra of rank l(a−) − (k − 1), so [u,w] is a

Boolean algebra of the correct rank.

Now consider the case where k > 0 and l(wk+1) > 0. Write s for the last letter of a, let a− be

the word obtained by deleting the last letter, s, from a, and let w− be the element corresponding

to a−. If the hypotheses of Proposition 3.4.2 hold, then [u,w] ∼= [u,w−] × [1, s], and by induction

on l(wk+1), [u,w−] is a Boolean algebra of rank l(a−) − l(b), so [u,w] is a Boolean algebra of the

correct rank.

To verify the hypotheses of Proposition 3.4.2, first notice that us > u because the generators

in b are distinct from s. Next, suppose for the sake of contradiction that us ≤ w−. Then some

subword of a− is a reduced word for us. But t1t2 · · · tks is a reduced word for us, and the k + 1

generators in this reduced word are distinct by (i). So any reduced word for us must contain exactly

these generators. But condition (i) states that each tj occurs exactly once in a, so reduced subwords

for us must have the form t1t2 · · · ti−1stiti+1 · · · tk. By (ii) there is an n with i ≤ n ≤ k so that

m(s, tn) > 2. We have reduced words t1t2 · · · tks and t1t2 · · · tj−1stjtj+1 · · · tk both standing for the

same element. We can change one of these words into the other by a series of braid moves. But,

since each generator only occurs once, these braid moves are all pairwise commutations. Since s and

tn don’t commute, s cannot be moved from the right of tn to the left of tn. This contradiction shows

that us 6≤ w−. Finally, suppose w−s < w−. By induction, u ≤ w− and because us > u, by lifting,

us ≤ w−, which contradicts what was just proven. So w−s > s. The hypotheses of Proposition

3.4.2 hold, and the proof is finished.

Theorem 3.5.2 is proven by finding words and Boolean subwords of the appropriate sizes. Figures

3.7, 3.8 and 3.9 show, for several finite Coxeter groups, a convenient way of naming the generators

for An, Dn and E8. For readers not familiar with representing Coxeter groups by a graph, the edges
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represent pairs s, t of generators for which m(s, t) = 3. Pairs s, t of generators not connected by an

edge have m(s, t) = 2. A labeling for E6 or E7 is obtained by deleting the vertices a3 and/or b4.

Figure 3.7: A labeling of the generators of An.

a1 b1 a2 b2 a3 b3

Figure 3.8: A labeling of the generators of Dn.

a1

b1

a2

b2c1 c2 b3

Figure 3.9: A labeling the generators of E8.

a1b1 a2b2 a3b3 b4

c

Figure 3.10: Words and Boolean subwords for types A, D and E.

Group k General di Exceptions Rank

A2n n ai−1aiai+1 w1 = a1a2, wn = an−1an, wn+1 = an 3n− 1

A2n+1 n ai−1aiai+1 w1 = a1a2, wn+1 = anan+1 3n+ 1

D2n n− 1 ci−2ci−1ci w1 = a1a2c1, w2 = a1a2c1c2, wn = cn−2cn−1 3n

D2n+1 n ci−2ci−1ci w1 = a1a2c1, w2 = a1a2c1c2, wn = cn−2cn−1, wn+1 = cn−1 3n+ 1

Group Subword Word Rank

E6 b1b2b3 a1b1a1a2cb2a1a2cb3a2 8

E7 b1b2b3 a1b1a1a2cb2a1a2a3cb3a2a3 10

E8 b1b2b3b4 a1b1a1a2cb2a1a2a3cb3a2a3b4a3 11

Figure 3.10 shows how to construct words and Boolean subwords for groups of types A, D and E,

and gives the rank of the Boolean algebra produced. The Boolean subword is always b1b2 · · · bk for

the k indicated in the table. The other groups are treated like type A. The reader can easily verify

that the hypotheses of Proposition 3.5.3 are satisfied.
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3.6 A Recursion for the cd-index of Bruhat intervals

Theorems 3.2.6 and 3.4.5 yield Theorem 3.1.1, a set of recursions for the cd-indices of Bruhat

intervals. In this section we prove Theorem 3.1.1. For v ∈W and s ∈ S, define σs(v) := l(vs)− l(v).

Thus σs(v) is 1 if v is lengthened by s on the right and −1 if v is shortened by s on the right. We

have the following:

Theorem 3.1.1. Let u < us, w < ws and u ≤ w.

If us 6∈ [u,w], then Ψ[u,ws] = PyrΨ[u,w], and Ψ[us,ws] = Ψ[u,w].

If us ∈ [u,w], then

Ψ[u,ws] = PyrΨ[u,w] −
∑

v∈(u,w):vs<v

Ψ[u,v] · d ·Ψ[v,w] (3.4)

=
1

2



Ψ[u,w] · c+ c ·Ψ[u,w] +
∑

v∈(u,w)

σs(v)Ψ[u,v] · d ·Ψ[v,w]



 (3.5)

Ψ[us,ws] = SusΨ[u,w] −
∑

v∈(us,w):vs<v

Ψ[us,v] · d ·Ψ[v,w] (3.6)

= Ψ[u,w] +
1

2



Ψ[us,w] · c− c ·Ψ[us,w] +
∑

v∈(us,w)

σs(v)Ψ[us,v] · d ·Ψ[v,w]



 . (3.7)

Lines (3.5) and (3.7) of these formulas look like a augmented coproducts [23] on Bruhat intervals,

with an added sign. Lines (3.4) and (3.6) are more efficient for computation, because the formulas

in Proposition 2.5.3 are more efficient than the forms quoted in Proposition 2.5.2.

Proof of Theorem 3.1.1. The statement for us 6∈ [u,w] follows immediately from Propositions 3.4.2

and 3.4.3. Define the Pi as in Section 3.4. Thus by Theorem 3.2.6,

ΨPi−1
−ΨPi

= Ψ[(u,1),(vi,1)]Pi−1
· d ·Ψ[(vi,s),(w,s)]Pi−1

.

Since Pk = [u,ws], sum from i = 1 to i = k to obtain

Ψ[u,ws] = ΨP0
−

k
∑

j=1

Ψ[(u,1),(vj ,1)]Pj−1
· d ·Ψ[(vj ,s),(w,s)]Pj−1

.

By Proposition 3.4.7, [(u, 1), (vj , 1)]Pj−1
∼= [(u, 1), (vj , 1)]P0

. This in turn is isomorphic to [u, vj ].

Similarly, by Proposition 3.4.7, [(vj , s), (w, s)]Pj−1
∼= [(vj , s), (w, s)]P0

which is isomorphic to [vj , w].

Thus we have established the first line of the first formula in Theorem 3.1.1. The second line follows

from the first by Proposition 2.5.2.

A similar proof goes through for the second formula. The isomorphisms from Proposition 3.4.7

restrict to the appropriate isomorphisms for the [us,ws] case. The second line of the formula follows

by Proposition 2.5.2.
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3.7 The affine span of the cd-indices of Bruhat intervals

In [2], Bayer and Billera show that the affine span of the cd-indices of polytopes is the entire affine

space of monic cd-polynomials. In this section, as an application of Theorem 3.1.1, we prove that

the cd-indices of Bruhat intervals have the same affine span. The space of cd-polynomials of degree

n− 1 has dimension Fn, the Fibonacci number, with F1 = F2 = 1 and Fn = Fn−1+Fn−2. For each

n we will produce a set Fn consisting of Fn reduced words, corresponding to group elements whose

lower Bruhat intervals have linearly independent cd-indices.

Let (W,S := {s1, s2, . . .}) have a complete Coxeter graph with each edge labeled 3. Each Fn is

a set of reduced words of length n in W , with F1 = {s1}, F2 = {s1s2} and

Fn = Fn−1sn ∪· snFn−2sn,

where ∪· means disjoint union. Given a word w ∈ Fn−1, by Proposition 3.4.2, [1, wsn] ∼= Pyr[1, w],

so Ψ[1,wsn] = Pyr(Ψ[1,w]). Similarly, given a word w′ ∈ Fn−2, [1, snw] ∼= Pyr[1, w]. Since sn

does not commute with any other generator, and since sn is not a letter in w, by Proposition

3.4.1, [1, snwsn] is obtained from [1, snw] by a single zipping. In particular, by Theorem 3.1.1,

Ψ[1,snwsn] = Pyr2(Ψ[1,w]) − d · Ψ[sn,snw]. By Corollary 3.4.3, [sn, snw] ∼= [1, w], so Ψ[1,snwsn] =

Pyr2(Ψ[1,w])− d ·Ψ[1,w]. Let Ψ(Fn) be the set of cd-indices of lower intervals under words in Fn.

Proposition 3.7.1. For each n ≥ 1, the Fn cd-polynomials in Ψ(Fn) are linearly independent.

Proof. As a base for induction, the statement is trivial for n = 1, 2. For general n, form the

matrix M whose rows are the coefficients of the cd-indices in Ψ(Fn). Order the columns by the

lexicographic order on cd-monomials. Order the rows so that the cd-indices in Ψ(Fn−1sn) appear

first. We will show that there are row operations which convert M to an upper-unitriangular

matrix. Notice that for each w ∈ Fn−2, Pyr
2Ψ[1,w] occurs in Ψ(Fn−1sn). Also, Pyr2Ψ[1,w] − d ·

Ψ[1,w] occurs in Ψ(snFn−2sn). Thus by row operations one obtains a matrix M ′ whose rows are

first Pyr(Ψ(Fn−1)), then d · Ψ(Fn−2). By induction, there are row operations which convert the

matrix with rows Ψ(Fn−1) to an upper-unitriangular matrix. By Proposition 3.7.2, these yield row

operations which give the first Fn−1 rows of M ′ an upper-unitriangular form. Also by induction,

there are row operations which convert the matrix with rows Ψ(Fn−2) to an upper-unitriangular

matrix. Corresponding operations applied to the rows d ·Ψ(Fn−2) of M
′ complete the reduction of

M ′ to upper-unitriangular form.

Proposition 3.7.2. Let P be a homogeneous cd-polynomial whose lexicographically first term is T .

Then the lexicographically first term of Pyr(P ) is c · T . In particular, the kernel of the pyramid

operation is the zero polynomial.

Proof. This follows immediately from the second formula in Proposition 2.5.3.

We have shown that the cd-indices of arbitrary Bruhat intervals span the space of cd-polynomials.

It would be interesting to know whether the cd-indices of Bruhat intervals in finite Coxeter groups
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also span, and whether a spanning set of intervals could be found in the finite Coxeter groups of

type A.

3.8 Bounds on the cd-index of Bruhat intervals

In this section we discuss lower and upper bounds on the coefficients of the cd-index of a Bruhat

interval. The conjectured lower bound is a special case of a conjecture of Stanley [56].

Conjecture 3.8.1. For any u ≤ v in W , the coefficients of Φ[u,v] are non-negative.

The coefficient of cn is always 1, and for the other coefficients the bound is sharp because the

dihedral group I2(m) has cd-index cm. Computer studies have confirmed the conjecture in Sn with

n ≤ 6.

The most interesting conjectural upper bound was mentioned previously, and is repeated below.

Conjecture 3.1.2. The coefficientwise maximum of all cd-indices Φ[u,v] with l(u) = k and l(v) =

d+k+1 is attained on a Bruhat interval which is isomorphic to a dual stacked polytope of dimension

d with d+ k + 1 facets.

This conjecture is natural in light of Proposition 3.5.1 and Theorem 3.1.1. There are two issues

which complicate the conjecture. First, any proof using Theorem 3.1.1 requires non-negativity

(Conjecture 3.8.1). Second, and perhaps even more serious, there is the issue of commutation of

operators.

Given p ∈ P denote the corresponding “downstairs” element in Pyr(P ) by p and the “upstairs”

element by p′. Denote the operation of zipping a zipper (x, y, z) by Zz. Then PyrZzP ∼= Zz′ZzPyrP .

The triple (x′, y′, z′) becomes a zipper only after Zz is applied. Pyramid and shaving also commute

reasonably well: PyrSaP ∼= Za′SaPyrP .

However, zipping does not in general commute nicely with the operation of shaving off a vertex

a. Given p 6= a ∈ P denote the corresponding element of SaP again by p, and if in addition p > a,

write p̄ for the new element created by shaving. If z > a and a 6∈ {x, y} then SaZzP ∼= ZzZz̄SaP .

If z 6> a then SaZzP ∼= ZzSaP . However, if x and y are vertices then SxyZzP = SzP , where Sz is

the operation of shaving off the edge z.

Since the pyramid operation commutes nicely with zipping, and any lower interval is obtained

by pyramid and zipping operations, it is possible to obtain any lower interval by a series of pyramid

operations followed by a series of zippings. Thus by Theorem 3.1.1:

Theorem 3.8.2. Assuming Conjecture 3.8.1, for all w ∈W ,

Φ[1,w] ≤ ΦBl(w)
.

Here Bn is the Boolean algebra of rank n. It is not true that the cd-index of general intervals

is less than that of the Boolean algebra of appropriate rank. For example, [1324, 3412] is the face

lattice of a square, with Φ[1324,3412] = c2 + 2d. However, ΦB3
= c2 + d.
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Equation (3.2) in the proof of Theorem 3.2.6 is a formula for the change in the ab-index under

zipping. Thus Theorem 3.1.1 has a flag h-vector version, and since the flag h-vectors of Bruhat

intervals are known to be nonnegative, the following theorem holds.

Theorem 3.8.3. For any w in an arbitrary Coxeter group,

Ψ[1,w] ≤ ΨBl(w)
.

Here “≤” means is coefficientwise comparison of the ab-indices, or in other words, comparison

of flag h-vectors

3.9 Extracting other invariants from the cd-index

The cd-index contains a large amount of enumerative information about a partially ordered set P .

In this section, we will show how to obtain recursions on several invariants of P from the cd-index

recursions in the previous section. The key point to remember is that c corresponds to a+ b in the

ab-index, which corresponds to a+2b in the flag-index. Similarly, d corresponds to ab+ ba+2bb in

the flag-index. Each of these recursions can also be obtained directly from Propositions 3.4.1 and

3.4.4. Throughout the section, let P be a poset with 0̂ and 1̂ which has a cd-index. We will use the

notation l(u, v) := l(v)− l(u).

Maximal chains

Let MP stand for the number of maximal chains in P − {0̂, 1̂}, with MP = 0 when P has only one

element and MP = 1 when P is a 2-element chain. To count the number of maximal chains, set

a = 0 and b = 1 in the flag-index. This is accomplished by setting c = d = 2 in Φ. One can check

that if P has rank n, then MPyr(P ) = (n+ 1)MP and MSa(P ) =MP + (n− 2)M[a,1̂].

Corollary 3.9.1. Let u < us, w < ws and u ≤ w.

If us 6∈ [u,w], then M[u,ws] = l(u,ws)M[u,w], and M[us,ws] =M[u,w].

If us ∈ [u,w], then

M[u,ws] = l(u,ws)M[u,w] − 2
∑

v∈(u,w):vs<v

M[u,v]M[v,w] (3.8)

= 2M[u,w] +
∑

v∈(u,w)

σs(v)M[u,v]M[v,w] (3.9)

M[us,ws] = M[u,w] + (l(us,ws)− 2)M[us,w] − 2
∑

v∈(us,w):vs<v

M[us,v]M[v,w] (3.10)

= M[u,w] +
∑

v∈(u,w)

σs(v)M[us,v]M[v,w]. (3.11)
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Chains

Let CP be the generating function for chains in P − {0̂, 1̂}, with the coefficient of qk counting the

chains consisting of k elements. If P has one element, CP = 0 and if P is a 2-element chain, CP = 1.

The function CP contains the same information as the zeta-polynomial of P . To obtain CP , set

a = 1 and b = q in the flag-index ΥP . Thus by setting c = 1 + 2q and d = 2q + 2q2 in Theorem

3.1.1, one obtains recursions on CP for Bruhat intervals.

The Charney-Davis conjecture

One can obtain recursions for the coefficient of dk in the cd-index of a Bruhat interval by setting

c = 0 and d = 1 in Equations (3.5) and (3.7) of Theorem 3.1.1. This coefficient is interesting

because, up to a sign, it is the quantity which appears in the Charney-Davis conjecture [15].

Length generating function

Let LP (q) be the rank generating function for P . So if P has one element, LP (q) = 1. For conve-

nience we will suppress the explicit q-dependence below. The previous invariants have been obtained

by specializing c and d to integers. The length generating function is obtained by applying a Z-linear
map which is not a specialization. First, number the factors in each monomial by position, with each

d occupying two positions. For example, number cccddcdcddd as c1c2c3d4d6c8d9c11d12d14d16. Map

c1c2 · · · cn to (1 + q)(1 + q + q2 + · · ·+ qn−1) and map c1c2 · · · ci−1dici+2ci+3 · · · cn to qi(1 + q). All

other monomials are mapped to zero. Note that the pyramid operation has the effect of multiplying

the length generating function by (1 + q), and that

LShaP = LP + L[a,1̂] − (1 + q).

Corollary 3.9.2. Let u < us, w < ws and u ≤ w.

If us 6∈ [u,w], then L[u,ws] = (1 + q)L[u,w], and L[us,ws] = L[u,w].

If us ∈ [u,w], then

L[u,ws] = (1 + q)





∑

v∈[u,w]:vs>v

ql(u,v)



 (3.12)

L[us,ws] =
∑

v∈[u,w]:vs>v

ql(u,v) +
∑

v∈[us,w]:vs>v

ql(us,v). (3.13)

This formula is particularly interesting because it expresses the length generating function of an

interval in terms of length generating functions in a quotient with respect to a parabolic subgroup

(see Section 4.7).
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3.10 Further questions

Zipping

Let P ′ be obtained from P by zipping the zipper (x, y, z).

1. If (a, b)¹ is an interval in P ′ with a 6= xy, is ∆((a, b)¹) homotopic to ∆((a, b)≤)? On the

other hand, when a = xy, the complex ∆((xy, b)¹) is obtained by deleting the vertex z from

the complex ∆((x, b)≤)∪∆((y, b)≤). Thus it is homotopic to the space ∆((x, b)≤)∪∆((y, b)≤)

with the point z deleted.

2. If every interval of P is a homology sphere, is the same true of P ′?

3. If P is Cohen-Macaulay, is P ′ also?

Polytopal Bruhat intervals

1. Characterize the polytopes which appear as Bruhat intervals. Characterize the polytopes

which appear as Bruhat intervals in finite Coxeter groups. Characterize the polytopes which

appear as Bruhat intervals in finite Coxeter groups of type A.

2. Are the Boolean algebras constructed in Section 3.5 the largest possible?

Affine span

Given n ≥ 1, is there a set of intervals in finite Coxeter groups which span the affine space of monic

cd-polynomials of degree n? Is there a set of such intervals in the finite Coxeter groups of type A?

Length generating function

Can Corollary 3.9.2 be generalized to a statement about length generating functions for intervals in

quotients with respect to other parabolic subgroups?
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Chapter 4

Order dimension, Bruhat order

and lattice properties for posets

4.1 Main Results

We give here three short summaries of the main results of this chapter, from three points of view.

We conclude the introduction by outlining the organization of the chapter.

Bruhat order

From the point of view of Bruhat order, the first main result of this chapter is the following:

Theorem 4.1.1. The order dimensions of the following Coxeter groups under the Bruhat order

are:

dim(An) =

⌊

(n+ 1)2

4

⌋

(4.1)

dim(Bn) =

(

n

2

)

+ 1 (4.2)

dim(H3) = 6 (4.3)

dim(H4) = 25 (4.4)

dim(I2(m)) = 2. (4.5)

The upper bound dim(An) ≤
(n+1)2

4 appeared as an exercise in [8], but the proof given here

does not rely on the previous bound. The result for type I (dihedral groups) is trivial.

A finite poset is dissective if every join-irreducible element generates a principal order filter whose

complement is a principal order ideal. Lascoux and Schützenberger [39] show that the Bruhat order

on Coxeter groups of types A and B is dissective (or exhibits “clivage”). In types A and B, the

dissective property of the strong order is closely related to the tableau criterion [8, 9]. Geck and

Kim [32] show that Bruhat order on types D, E and F is not dissective. They also cite computer
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calculations to the effect that the exceptional type H is dissective. Type I is easily seen to be

dissective. The following theorem applies:

Theorem 4.1.2. If P is a dissective poset then dim(P ) = width(Irr(P )).

Here, Irr(P ) is the subposet of join-irreducible elements.

The subposet Irr(An) can be realized as a lattice tetrahedron in R4 [26] or can be characterized

by considering certain “rectangular” words in the Coxeter group.

Theorem 4.1.3. Irr(An) has a symmetric chain decomposition.

In particular, width(Irr(An)) is the number of chains in the symmetric chain decomposition.

The distributive lattice J(Irr(An)) is the lattice of monotone triangles [39], which are in bijection

with alternating sign matrices. The lattice of monotone triangles is the MacNeille completion of

the Bruhat order on An and has the same dimension as An. (The MacNeille completion of a finite

poset P is the smallest lattice containing P as a subposet.) The poset Irr(Bn) is less well-behaved,

but its width can be determined by finding an antichain and a chain-decomposition of the same

size. The results for H3 and H4 are obtained by computer calculations of the width.

The dissective property is inherited by quotients with respect to parabolic subgroups, so Theorem

4.1.2 can be used to determine the order dimensions of quotients in types A, B, H and I (see Theorems

4.8.3 and 4.9.1). Theorem 4.1.5, below, can in principle be used to compute bounds on the order

dimensions of types D, E and F.

The order-dimension calculations reflect a deeper insight into the structure of Bruhat orders

and quotients. For a poset, being dissective is, in a very strong sense, analogous to a lattice being

distributive—for a precise statement, see Theorem 4.1.6 below. Bruhat orders and quotients of types

A, B, H and I are, in some sense, “distributive non-lattices”. The fact that Bruhat quotients inherit

the dissective property reflects the intimate relationship of Bruhat quotients to lattice quotients.

The equivalence relation on the strong order arising from cosets of a parabolic subgroup is an

example of a poset congruence, which is in the same strong sense analogous to a lattice congruence

(Theorem 4.1.7). Theorem 4.1.7 also shows that given any quotient of Bruhat order on type A,

there is a unique corresponding lattice quotient on the lattice of monotone triangles.

The reader who is primarily interested in Theorem 4.1.1 may wish to skip Sections 3 through 6

on the first reading.

Order dimension

From the point of view of order dimension, the main result of this chapter is Theorem 4.1.2, which

generalizes the following result of Dilworth:

Theorem 4.1.4. [18] If L is a distributive lattice, then dim(L) = width(Irr(L)).

Theorem 4.1.2 is a generalization in the sense that a lattice is dissective if and only if it is

distributive. The generalization is meaningful because there is an important class of dissective

posets, namely the Bruhat orders on finite Coxeter groups of types A, B, H and I.
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Theorem 4.1.2 follows from a more general result:

Theorem 4.1.5. For a finite poset P , width(Dis(P )) ≤ dim(P ) ≤ width(Irr(P )).

Here Dis(P ) is a subposet of Irr(P ) consisting of dissectors of P , those elements which generate a

principal order filter whose complement is a principal order ideal. The upper bound in Theorem 4.1.5

also appears in [52]. The lower bound, in the case where P is a lattice, is implicit in [27]. A poset

P is dissective if Dis(P ) = Irr(P ). The dissective posets include, for example, distributive lattices

and the “standard examples” of order dimension.

Both Theorem 4.1.5 and Theorem 4.1.2 can be expressed geometrically in terms of the critical

complex C(P ), a simplicial complex such that the dimension of P is the size of a smallest set of

faces of C(P ) covering the vertices of C(P ). The critical complex is “dual” to the hypergraph H c
P

of critical pairs in [28], in that Hc
P is a hypergraph on the same vertex set whose edges are the

minimal non-faces of C(P ). The critical complex sheds light on the connection between dimension

and width: The width of a poset is the size of a smallest covering set of its order complex, while the

dimension is the size of a smallest covering set of C(P ). Theorem 4.3.7, stated in detail in Section 3,

essentially gives an embedding of the order complex ∆(Dis(P )) as a subcomplex of C(P ) and a map

from C(P ) into ∆(Irr(P )) which respects the face structure. Theorem 4.4.3, also in Section 3, gives

what is essentially an isomorphism between ∆(Irr(P )) and C(P ), in the case when P is dissective.

The reader interested primarily in order-dimension may wish to skip Sections 4 through 6 on

the first reading, and can consider Sections 7 through 9 to be an extended example.

Lattice properties for posets

The third theme of this chapter is taking definitions that apply to finite lattices and finding the

“right” generalization to finite posets. We propose that given a lattice property A, the right gen-

eralization is the poset property A′ such that a poset P has the property A′ if and only if the

MacNeille completion L(P ) has the property A. (The MacNeille completion of a finite poset P can

be defined as the “smallest” lattice L(P ) containing P , in the sense that any lattice containing P

as a subposet contains L(P ) as a subposet.) For example, the following is [39, Theorem 2.8]. We

give a different proof.

Theorem 4.1.6. For a finite poset P, the following are equivalent:

(i) P is dissective.

(ii) The MacNeille completion L(P ) is a distributive lattice.

(iii) The MacNeille completion L(P ) is J(Irr(P )).

The Bruhat orders on finite Coxeter groups of types A, B, H and I provide interesting examples

of dissective posets. In Section 4, we explore the extent to which dissective posets have analogous

properties to distributive lattices. The most striking case is, of course, Theorem 4.1.2.
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Similarly, given a structure on a lattice, we propose that the “right” generalization of the struc-

ture to posets should respect the MacNeille completion. For example, in Section 5 we define a

notion of poset congruence with the following property:

Theorem 4.1.7. Let P be a finite poset with MacNeille completion L(P ), and let Θ be an equiv-

alence relation on P . Then Θ is a congruence on P if and only if there is a congruence L(Θ) on

L(P ) which restricts exactly to Θ, in which case

(i) L(Θ) is the unique congruence on L(P ) which restricts exactly to Θ, and

(ii) The MacNeille completion L(P/Θ) is naturally isomorphic to L(P )/L(Θ).

The notion of exact restriction is the usual restriction of relations, with an extra condition.

A closely related example is the problem of defining homomorphisms of posets in the right way

so as to make them analogous to lattice homomorphisms. Chajda and Snášel [14] give definitions of

poset homomorphisms and congruences which correspond to each other in the usual way. The same

correspondence holds (by the same proof) between our poset congruences and order-morphisms,

which both differ in a trivial way from the definitions in [14]. In light of Theorem 4.1.7, order-

morphisms are the right generalization of lattice homomorphisms.

The reader interested primarily in lattice theory may wish to skip Section 3 on the first reading,

and can consider Sections 7 through 9 to be an extended example.

Outline

This chapter is structured as follows: Section 4.2 establishes notation, defines join-irreducibles of a

non-lattice, dissectors and dissective posets, and concludes with a proof of Theorem 4.1.5. In Section

4.3, the critical complex is defined and Theorem 4.3.7, a geometric version of Theorem 4.1.5, is stated

and proved. Dissective posets are characterized in Section 4.4, which also contains a description of

the critical complex of a dissective poset, and a comparison of the properties of dissective posets

and distributive lattices. Poset congruences and order-quotients are defined in Section 4.5 and

shown to behave well with respect to join-irreducibles and dissectors. Section 4.6 is devoted to the

MacNeille completion, and the proofs of Theorems 4.1.6 and 4.1.7. Section 4.7 provides a short

summary of Bruhat order on a Coxeter group, while Section 4.8 contains the proof of Theorem 4.1.3

and a calculation of the width of Irr(An). Section 4.9 contains the calculation of width(Irr(Bn)),

Section 4.10 is a brief discussion of the other types, and Section 4.11 contains further questions and

directions for future research.

4.2 Join-irreducibles and dissectors

In this section, we provide background information about join-irreducibles and dissectors, and finish

with a proof of Theorem 4.1.5.
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Joins and meets, typically encountered in the context of lattices, can also be defined in general

posets. Given x and y, if U [x] ∩ U [y] has a unique minimal element, this element is called the join

of x and y and is written x∨P y or simply x∨ y. If D[x]∩D[y] has a unique maximal element, it is

called the meet of x and y, x ∧P y or x ∧ y. Given a set S ⊆ P , if ∩x∈SU [x] has a unique minimal

element, it is called ∨S. The join ∨∅ is 0̂ if P has a unique minimal element 0̂, and otherwise ∨∅

does not exist. If ∩x∈SD[x] has a unique maximal element, it is called ∧S. The meet ∧∅ exists if

and only if a unique maximal element 1̂ exists, in which case they coincide. The notation, x∨ y = a

means “x and y have a join, which is a,” and similarly for other statements about joins and meets.

The description of an element as “join-irreducible” is usually heard in the context of lattices.

However, it is useful to apply the definition to general posets, as in [32], [39] and [52]. An element a

of a poset P is join-irreducible if there is no set X ⊆ P with a 6∈ X and a = ∨X. If P has a unique

minimal element 0̂, then 0̂ is ∨∅ and thus is not join-irreducible. In a lattice, a is join-irreducible

if and only if it covers exactly one element. Such elements are also join-irreducible in non-lattices,

but an element a which covers distinct elements {xi} is join-irreducible if {xi} has an upper bound

incomparable to a. A minimal element of a non-lattice is also join-irreducible, if it is not 0̂. It is

easily checked that if x ∈ P is not join-irreducible, then x = ∨D(x). The subposet of P induced by

the join-irreducible elements is denoted Irr(P ). In [32] and [39], the set Irr(P ) is called the base of P .

The subposet of meet-irreducibles does not figure strongly in this chapter, and that perhaps excuses

the cumbersome notation MeetIrr(P ) for this subposet. For x ∈ P , let Ix denote D[x]∩ Irr(P ), the

set of join-irreducibles weakly below x in P .

Proposition 4.2.1. Let P be a finite poset, and let x ∈ P . Then x = ∨Ix.

Proof. By induction on the cardinality of D[x]. The result is trivial if D[x] has one element. If x is

join-irreducible, then x ∈ Ix, and every other element of Ix is below x. Thus x = ∨Ix. If not, then

write x = ∨D(x). By induction, each y in D(x) has y = ∨Iy, or in other words ∩i∈Iy
U [i] = U [y].

Then U [x] = ∩y∈D(x)U [y] = ∩y∈D(x) ∩i∈Iy
U [i] = ∩i∈Ix

U [i], or in other words, x = ∨Ix.

For a finite poset P , define J(P ) to be the lattice of order ideals of P , ordered by inclusion. The

Fundamental Theorem of Finite Distributive Lattices states that a finite distributive lattice L has

L ∼= J(Irr(L)), and that for any finite poset P , J(P ) is distributive with Irr(J(P )) ∼= P .

The proofs of the following two propositions are easy.

Proposition 4.2.2. [39] An element x ∈ P is join-irreducible if and only if there exists a y ∈ P

such that x is minimal in P −D[y].

Proposition 4.2.3. If x is join-irreducible (or dually meet-irreducible) in a lattice L, then L−{x}

is a lattice.

While L− {x} is a subposet of L and a lattice, it is not usually a sublattice.

An element x ∈ P is called a(n) (upper) dissector of P if P −U [x] = D[β(x)] for some β(x) ∈ P .

In other words, P can be dissected as a disjoint union of the principal order filter generated by x

and the principal order ideal generated by β(x). By the same token, call β(x) a lower dissector .
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From now on, however, the term dissector refers to an upper dissector. Thus for each result about

dissectors, there is a dual result about lower dissectors which is not stated. The subposet of dissectors

of P is called Dis(P ). In the lattice case the definition of dissector coincides with the notion of a

prime element. An element x of a lattice L is called prime if whenever x ≤ ∨Y for some Y ⊆ L,

then there exists y ∈ Y with x ≤ y.

Proposition 4.2.2 implies:

Proposition 4.2.4. If x is a dissector of P then x is join-irreducible.

The converse is not true in general, and the reader can find a 5-element lattice to serve as a

counterexample. A poset P in which every join-irreducible is a dissector is called a dissective poset.

In [39] this property of a poset is called “clivage.”

We now give a proof of Theorem 4.1.5. Notice in particular, that this proof actually constructs

an embedding of P into Nw, where w = width(Irr(P )).

First Proof of Theorem 4.1.5. Let C1, C2, . . . , Cw be a chain decomposition of Irr(P ). For each

m ∈ [w], and x ∈ P , let fm(x) = |Ix ∩ Cm|. By Proposition 4.2.1, x ≤ y if and only if Ix ⊆ Iy if

and only if fm(x) ≤ fm(y) for all m ∈ [w]. Thus x 7→ (f1(x), f2(x), . . . , fw(x)) is an embedding of

P into Nw.

For the lower bound, consider an antichain A in Dis(P ). Each a ∈ A has P −UP [a] = DP [β(a)]

for some β(a) ∈ P . In particular A − {a} ⊆ DP [β(a)]. So the subposet of P induced by A ∪ β(A)

is a “standard example” of size |A|. Thus dim(P ) ≥ dim(A ∪ β(A)) = |A|.

This proof relies on knowing the order dimensions of the “standard examples.” One way to find

the order dimension of the standard examples is to notice that they are dissective posets whose join

irreducibles form an antichain. However, to avoid this circular reasoning, one can easily compute

the order dimension of the standard examples directly, or by the method of the next section.

4.3 The critical complex of a poset

In this section, we give the definition of the critical complex, relate the critical complex to join-

irreducibles and dissectors, and give another proof of Theorem 4.1.5. The simple proofs of some

propositions are omitted.

A critical pair in a poset P is (a, b) with the following properties:

(i) a ‖ b,

(ii) D(a) ⊆ D(b), and

(iii) U(b) ⊆ U(a).

As motivation, note that properties (ii) and (iii) hold for a related pair a ≤ b. If (a, b) is a critical

pair, the partial order ≤ can be extended to a new partial order ≤′ by putting x ≤′ y if x ≤ y or if
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(x, y) = (a, b). So in some sense, a critical pair (a, b) is “almost” a related pair a ≤ b. The set of

critical pairs of P is denoted Crit(P ).

Say an extension E of P reverses a critical pair (a, b) if b < a in E. The following fact is due to

I. Rabinovitch and I. Rival [46]:

Proposition 4.3.1. If L1, L2, . . . , Ln are linear extensions of P then P = ∩i∈[n]Li if and only if

for each critical pair (a, b), there is some Li for which b < a in Li.

The critical digraph D(P ) of P is the directed graph whose vertices are the critical pairs, with

directed edge (a, b) → (c, d) whenever b ≥ c. The next proposition follows from Lemma 6.3 of

Chapter 1 of [58].

Proposition 4.3.2. Let S be any set of critical pairs of P . Then there is a linear extension of P

reversing every critical pair in S if and only if the subgraph of D(P ) induced by S is acyclic.

Proposition 4.3.2 motivates the definition of the critical complex C(P ) of P, an abstract simplicial

complex whose vertices are the critical pairs of P , and whose faces are the sets of vertices which

induce acyclic subgraphs of D(P ). A set of faces {Fi} of a simplicial complex C with vertex set V

is a covering set if ∪iFi = V . Propositions 4.3.1 and 4.3.2 imply that (when P is not a total order)

the order dimension of P is the size of a smallest covering set of C(P ).

A similar (and in some sense dual) construction to the critical complex is given by Felsner and

Trotter [28]. Their hypergraph Hc
P of critical pairs is exactly the hypergraph whose vertices are

critical pairs and whose edges are minimal non-faces of C(P ). They also define the graph Gc
P of

critical pairs whose vertices are the critical pairs and whose edges are the edges of cardinality 2

of Hc
P . The size of a smallest covering set of C(P ) is exactly the chromatic number χ(H c

P ). The

following is [28, Lemma 3.3]:

dim(P ) = χ(Hc
P ) ≥ χ(Gc

P ) (4.6)

The easy proofs of the following propositions are omitted. Proposition 4.3.3 was noticed by

Rabinovitch and Rival [46] in the context of distributive lattices.

Proposition 4.3.3. If (a, b) is a critical pair, then a is join-irreducible.

Proposition 4.3.4. Let (a1, b1), (a2, b2), . . . , (ak, bk) be critical pairs in P with a1 ≤ a2 ≤ · · · ≤ ak.

Then {(a1, b1), (a2, b2), . . . , (ak, bk)} is a face of C(P ).

Proposition 4.3.5. Let a ∈ P be a non-pivot dissector. Then (a, β(a)) is a critical pair. Further-

more the only critical pair (a, b) is the pair with b = β(a).

Proposition 4.3.6. Let a, x ∈ P be dissectors with a ‖ x. Then {(a, β(a)), (x, β(x))} is not a face

in C(P ).

Since the width of a poset P is the size of a smallest covering set of the order complex ∆(P ),

one might expect that Theorem 4.1.5 follows from some relationships between the order complexes
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∆(Dis(P )) and ∆(Irr(P )) and the critical complex C(P ). The following theorem explains such a

relationship. Write Dis(P )nonpiv for the subposet of Dis(P ) consisting of non-pivots and Dis(P )piv

for the subposet of pivots. Similarly Irr(P )nonpiv and Irr(P )piv.

Given two abstract simplicial complexes A and B, let A ∗B be the join of A and B, a simplicial

complex whose vertex set is the disjoint union of the vertices of A and of B, and whose faces are

exactly the sets F ∪G for all faces F of A and G of B. It is evident that ∆(Dis(P )piv) is a simplex

and that

∆(Dis(P )) ∼= ∆(Dis(P )piv) ∗∆(Dis(P )nonpiv).

Similarly ∆(Irr(P )piv) is a simplex and

∆(Irr(P )) ∼= ∆(Irr(P )piv) ∗∆(Irr(P )nonpiv).

In light of Propositions 4.3.3 and 4.3.5, we have well defined set maps:

i : Dis(P )nonpiv → Crit(P ), p : Crit(P )→ Irr(P )nonpiv

a
i
7→ (a, β(a)) (a, b)

p
7→ a

.

Theorem 4.3.7. The set map i induces a simplicial map i : ∆(Dis(P )nonpiv)→ C(P ) which embeds

∆(Dis(P )nonpiv) as a vertex-induced subcomplex of C(P ). Also, if F is any face in the image of p,

then p−1(F ) is a face of C(P ).

Saying that i embeds ∆(Dis(P )nonpiv) as a vertex-induced subcomplex of C(P ) means that i is

one-to-one, maps faces of ∆(Dis(P )nonpiv) to faces of C(P ) and for any face F of i(∆(Dis(P )nonpiv),

i−1(F ) is a face of ∆(Dis(P )nonpiv). If F is a face of C(P ), then p(F ) need not be a face of

∆(Irr(P )nonpiv). For example, let P be an antichain {a, b, c} and let F be {(a, b), (b, c)}.

Proof. The statement that i is one-to-one and maps faces of ∆(Dis(P )nonpiv) to faces of C(P ) follows

immediately from Propositions 4.3.4 and 4.3.5. Proposition 4.3.6 is exactly the statement that for

any face F of i(∆(Dis(P )nonpiv), i
−1(F ) is a face of ∆(Dis(P )nonpiv). The last statement of the

theorem also follows immediately from Proposition 4.3.4.

Second Proof of Theorem 4.1.5. Since ∆(Dis(P )nonpiv) is embedded into C(P ), any covering set

of C(P ) restricts to a covering set of∆(Dis(P )nonpiv). Whenever ∆(Dis(P )nonpiv) is non-empty,

a covering set of ∆(Dis(P )nonpiv), is easily extended to a set of the same cardinality covering

∆(Dis(P )) ∼= ∆(Dis(P )piv) ∗∆(Dis(P )nonpiv).

Any covering set of ∆(Irr(P )) restricts to a covering set of ∆(Irr(P )nonpiv), which maps by p−1

to a covering set of C(P ).

4.4 Dissective posets

In this section, we study dissective posets: posets in which every join-irreducible is a dissector.

In light of this definition, Theorem 4.1.2 follows trivially from Theorem 4.1.5, and the embedding
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given in the first proof of Theorem 4.1.5 is an optimal embedding. The dissective property is a

generalization of the distributive property, in the following sense:

Proposition 4.4.1. [27, 42] A finite lattice L is distributive if and only if every join-irreducible is

prime.

In other words, a lattice is distributive if and only if it is dissective. This statement is strength-

ened in the next section. In this section we characterize dissective posets, describe the critical

complex of a dissective poset and discuss the extent to which dissective posets have properties

analogous to distributive lattices.

Proposition 4.4.2. Let L be a finite distributive lattice and let P be a subposet with

Irr(L) ∪MeetIrr(L) ⊆ P.

Then P is a dissective poset and Irr(P ) = Irr(L).

Proof. Suppose x ∈ Irr(L) = Dis(L). Then there is a

β(x) := ∨L{y ∈ L : y 6≥ x} = ∨L{y ∈ Irr(L) : y 6≥ x}.

But β(x) ∈ MeetIrr(L), so β(x) ∈ P . Any upper bound z for {y ∈ P : y 6≥ x} is in particular an

upper bound for {y ∈ Irr(L) : y 6≥ x} so in particular z ≥ β(x). Thus β(x) = ∨P {y ∈ P : y 6≥ x}.

Therefore x ∈ Dis(P ), and so Irr(L) ⊆ Dis(P ) ⊆ Irr(P ).

Suppose x ∈ Irr(P ) and write x = ∨L(DL[x] ∩ Irr(L)). By the previous paragraph, DL[x] ∩

Irr(L) ⊆ P , and since P is a subposet, x = ∨P (DL[x]∩Irr(L)). But x ∈ Irr(P ), so x ∈ DL[x]∩Irr(L).

Therefore Irr(P ) ⊆ Irr(L).

In light of Theorem 7, L is the MacNeille completion of P , and every dissective poset arises as

in Proposition 4.4.2. For example, the “standard examples” of n-dimensional posets arise in this

manner from the Boolean algebra of rank n.

When P is dissective, Theorem 4.3.7 simplifies greatly. Since every join-irreducible is a dissector

and by Proposition 4.3.5, every dissector gives rise to exactly one critical pair, the map i is a

bijection with inverse p, and therefore an isomorphism of simplicial complexes.

Theorem 4.4.3. If P be a dissective poset, then the order complex ∆(Irr(P )) is isomorphic to

C(P ) ∗∆(Irr(P )piv).

The statement is even simpler than it looks since ∆(Irr(P )piv) is a simplex. Similar considerations

also show that for a dissective poset, the hypergraph Hc
P of critical pairs is equal to the graph Gc

P

of critical pairs. Thus equality holds in Equation (4.6) when P is dissective.

We now list some properties of dissective posets which are analogous to familiar properties of

distributive lattices. The proofs are straightforward, and are omitted.

Proposition 4.4.4. If P is dissective, then so is the dual of P .
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Proposition 4.4.5. If P is a dissective poset then β : Irr(P ) → MeetIrr(P ) is an order isomor-

phism.

Proposition 4.4.6. If a dissective poset P is self-dual then Irr(P ) is self-dual.

Even when P is not dissective, β is an order isomorphism from Dis(P ) to the subposet of lower

dissectors, and if P is self-dual, then Dis(P ) is also self-dual.

Finally, we mention several properties of distributive lattices which appear not to have analogues

for dissective posets. The converse of Proposition 4.4.6 holds for distributive lattices, but not for

dissective posets. The distributive property in a finite lattice is inherited by intervals, but the

analogous property is not true of the dissective property in a finite poset. Finally, distributive lattices

can be characterized by the fact that they avoid certain sublattices. No similar characterization for

dissective posets is immediately apparent.

4.5 Order-quotients

In this section we define order-quotients and prove that they behave nicely with respect to join-

irreducibles and dissectors. The reader familiar with Bruhat order may want to keep in mind

quotients with respect to parabolic subgroups as a motivating example. Let P be a finite poset

with an equivalence relation Θ defined on the elements of P . Given a ∈ P , let [a]Θ denote the

equivalence class of a under Θ. The equivalence relation Θ is a congruence if:

(i) Every equivalence class is an interval.

(ii) The projection π↓ : P → P , mapping each element a of P to the minimal element in [a]Θ, is

order-preserving.

(iii) The projection π↑ : P → P , mapping each element a of P to the maximal element in [a]Θ, is

order-preserving.

The definition given here essentially coincides, when P is finite, to the notion of poset congruence,

as defined in [14]. The difference is that in [14], P ×P is by definition always a congruence. Also in

[14], there is the definition of LU-morphisms, which we call order-morphisms. The definition given

here differs from [14], in a way that corresponds to the difference in the definitions of congruence.

A map f : P → Q for finite P and Q is an order-morphism if for any x, y ∈ P ,

f(DP [x] ∩DP [y]) = Df(P )[f(x)] ∩Df(P )[f(y)]

and if the dual statement also holds. Congruences and order-morphisms are related in the usual

way. The proof can be found in [14] and still works with the slightly modified definitions.

A congruence on a lattice L is an equivalence relation which respects joins and meets. Specifically,

if a1 ≡ a2 and b1 ≡ b2 then a1 ∨ b1 ≡ a2 ∨ b2 and similarly for meets. For a finite lattice L, the two

notions of congruence coincide. So from now on, the term congruence is used without specifying
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“lattice” or “poset.” A connection is made in Section 6 between congruences on a finite poset and

congruences on its MacNeille completion.

Define a partial order on the congruence classes by [a]Θ ≤ [b]Θ if and only if there exists x ∈ [a]Θ

and y ∈ [b]Θ such that x ≤P y. The set of equivalence classes under this partial order is P/Θ,

the quotient of P with respect to Θ. It is convenient to identify P/Θ with the induced subposet

Q := π↓(P ), as is typically done for example with quotients of Bruhat order. Such a subposet Q

is called an order-quotient of P . It is easily seen that π↑ maps Q isomorphically onto π↑(P ). The

inverse is π↓.

We wish to compare Dis(P/Θ) and Irr(P/Θ) to Dis(P ) and Irr(P ).

Proposition 4.5.1. Suppose Q is an order-quotient of P . If x = ∨QY for some Y ⊆ Q, then

x = ∨PY . If x = ∨PY for some Y ⊆ P , then π↓(x) = ∨
Qπ↓(Y ).

Proof. Suppose x = ∨QY for Y ⊆ Q and suppose z ∈ P has z ≥ y for every y ∈ Y . Then

π↓(z) ≥ π↓(y) = y for every y ∈ Y . Therefore z ≥ π↓(z) ≥ x. Thus x = ∨PY .

Suppose x = ∨PY for Y ⊆ P , and suppose that for some z ∈ Q, z ≥ π↓(y) for every y ∈ Y .

Then π↑(z) ≥ π↑(y) ≥ y for every y ∈ Y , and so π↑(z) ≥ x. Thus also π↓(π
↑(z)) ≥ π↓(x), but

π↓(π
↑(z)) = z, and so π↓(x) = ∨

Qπ↓(Y ).

Proposition 4.5.2. Suppose Q is an order-quotient of P and let x ∈ Q. Then x is join-irreducible

in Q if and only if it is join-irreducible in P , and x is a dissector of Q if and only if it is a dissector

of P . In other words,

Irr(Q) = Irr(P ) ∩Q and, (4.7)

Dis(Q) = Dis(P ) ∩Q. (4.8)

In particular, if P is dissective, then so is any order-quotient. Also, for any P with order-quotient

Q such that Q ∩ Irr(P ) ⊆ Dis(P ), Q is dissective.

Proof. Suppose x ∈ Q is join-irreducible in Q. Then by Proposition 4.2.2, there is some y ∈ Q so

that x is minimal in Q −DQ[y]. Then x is also minimal in P −DP [π
↑(y)], so x is join-irreducible

in P . Conversely, suppose x ∈ Q is join-irreducible in P , and suppose x = ∨QY for some Y ⊆ Q.

Then by Proposition 4.5.1, x = ∨PY , so x ∈ Y . Thus x is join-irreducible in Q.

Suppose x ∈ Q is a dissector of Q. Then there is some βQ(x) ∈ Q such that Q − UQ[x] =

DQ[β
Q(x)]. Then π↑(βQ(x)) 6≥ x because otherwise βQ(x) ≥ π↓(x) = x. Furthermore, for any

z 6≥ x, necessarily π↓(z) 6≥ x, and therefore π↓(z) ≤ βQ(x). So z ≤ π↑(z) ≤ π↑(βQ(x)). Thus x

is a dissector of P with P − UP [x] = DP [π
↑(βQ(x))]. Conversely, suppose x ∈ Q is a dissector

of P , or in other words, there is some βP (x) ∈ P such that βP (x) = ∨P (P − UP [x]). Then by

Proposition 4.5.1, π↓(β
P (x)) = ∨Qπ↓(P − UP [x]) = ∨

Q(Q− UQ[x]), so x is a dissector of Q.

Quotients of Bruhat order with respect to parabolic subgroups are order-quotients (Proposition

4.7.1). There are also several examples in the literature relating to weak Bruhat order. A. Björner

and M. Wachs [13, Section 9] show that the Tamari lattices are quotients of the weak order on An.
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R. Simion [54, Section 4] defines a congruence on the Coxeter group Bn under the weak order, such

that the resulting quotient is the weak order on An.

4.6 The MacNeille completion

In this section we define the MacNeille completion of a finite poset and point out that it pre-

serves join-irreducibles, dissectors and critical pairs. We strengthen the assertion that the dissective

property generalizes the distributive property. This leads in particular to a different proof of The-

orem 4.1.2. We also strengthen the assertion that congruences on posets are a generalization of

congruences on lattices.

The MacNeille completion (also known as the MacNeille-Dedekind completion, completion by

cuts or enveloping lattice) of a poset P generalizes Dedekind’s construction of the reals from the

rationals. One construction of the completion is due to MacNeille [41] and more information can

be found in [58, Section 2.5] and [6, Section V.9]. Here we confine our attention to the MacNeille

completion of a finite poset. For a finite poset P , the MacNeille completion L(P ) is the “smallest”

lattice containing P , in the sense that any lattice containing P as an induced subposet contains L(P )

as an induced subposet. One way to obtain L(P ) for a finite poset is as the smallest collection of

subsets which contains P and UP [x] for each x ∈ P and which is closed under intersection [39]. The

partial order on L(P ) is reverse-inclusion, the join is intersection, and x 7→ UP [x] is an embedding

of P as a subposet of L(P ). Whatever joins exist in P are preserved by MacNeille completion: If

x = ∨PS for some S ⊆ P , then UP [x] = ∩y∈SUP [y], or in other words, x = ∨L(P )S. Conversely, if

x ∈ P is ∨L(P )S for some S ⊆ P , then x = ∨PS. This construction also shows that any element of

L(P ) is a join of elements of P .

The construction is seen to coincide with its dual construction (by order ideals) as follows: For

x ∈ L(P ), define Px to be the elements of P below x in L(P ). Then x = ∩y∈Px
UP [y], the partial

order on L(P ) is inclusion of the sets Px and the meet is intersection of sets Px. It also follows that

x = ∨L(P )Px.

Proposition 4.6.1. Let P be a finite poset and let L(P ) be its MacNeille completion. Then

(i) Irr(P ) = Irr(L(P ))

(ii) Dis(P ) = Dis(L(P )), and

(iii) Crit(P ) = Crit(L(P )).

Remark 4.6.2. Assertion (i) is implicit in the proof of [39, Théorème 2.8]. Although we were

unable to find (iii) in the literature, it is closely related to [58, Exercise 2.5.7].

Proof of Proposition 4.6.1. Suppose that x ∈ Irr(L(P )). Then by Proposition 4.2.3, L(P )− {x} is

a lattice. Thus by the definition of L(P ), necessarily x ∈ P . Since joins are preserved in L(P ),

join-irreducibility of x in L(P ) implies join-irreducibility in P . Conversely, suppose that x ∈ Irr(P )

and write x = ∨L(P )S for some S ⊆ Irr(L(P )). Since we have just shown that every join-irreducible
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in L(P ) is join-irreducible in P , S ⊆ Irr(P ). Since joins are preserved, x = ∨PS, and therefore

x ∈ S. Thus x ∈ Irr(L(P )).

Let x be a dissector in P and βP (x) = ∨P (P − UP [x]). Because joins are preserved, βP (x) =

∨L(P )(P − UP [x]). But each element of the set (L(P ) − UL(P )[x]) can be written as the join of

elements of P − UP [x], so βP (x) = ∨L(P )(L(P ) − UL(P )[x]). Thus x is a dissector in L(P ) with

βL(P )(x) = βP (x). Conversely, suppose x is a dissector in L(P ) and βL(P )(x) = ∨L(P )(L(P ) −

UL(P )[x]). Then βL(P )(x) is meet-irreducible, so by the dual of assertion (i), βL(P )(x) ∈ P . Since

βL(P )(x) is an upper bound for P − UP [x], and βL(P )(x) is also contained in P − UP [x], we have

βL(P )(x) = ∨
P (P − UP [x]) = βP (x).

Let (a, b) be a critical pair of P . Then a is join-irreducible in P by Proposition 4.3.3 and thus

join-irreducible in L(P ) by assertion (i). Let x be the single element of L(P ) covered by a. But x is

the join of all the join-irreducibles weakly below it, and b is above all these join-irreducibles because

they are below a. Thus x ≤ b and condition (ii) holds for (a, b) to be critical in L(P ). Condition

(iii) is dual, and condition (i) holds because P is an induced subposet of L(P ). Conversely, let

(a, b) be a critical pair of L(P ). By Proposition 4.3.3, a is join-irreducible, and so a ∈ P . Dually,

b ∈ P . Conditions (i), (ii) and (iii) for (a, b) to be critical in P follow easily because P is an induced

subposet of L(P ).

Theorem 4.1.6, due to Lascoux and Schützenberger [39], follows easily from Proposition 4.4.1

and assertions (i) and (ii) of Proposition 4.6.1.

Theorem 4.1.6. For a finite poset P , the following are equivalent:

(i) P is dissective.

(ii) The MacNeille completion L(P ) is a distributive lattice.

(iii) The MacNeille completion L(P ) is J(Irr(P )).

Assertion (iii) of Proposition 4.6.1 implies the known fact [58, Exercise 2.5.7], [6, Section V.9]

that order dimension is preserved by MacNeille completion. Thus Theorem 4.1.6 combines with

Theorem 4.1.4 to give a different (more complicated) proof of Theorem 4.1.2.

Given a finite lattice L with a subposet P , a congruence Θ on L restricts exactly to P if every

congruence class [x, y] of Θ has either x, y ∈ P or [x, y] ∩ P = ∅. The next proposition follows

immediately from the definitions.

Proposition 4.6.3. If a congruence Θ on L restricts exactly to P , then the restriction (as a relation)

Θ|P of Θ to P is a congruence, and L/Θ is a lattice containing P/(Θ|P ) as a subposet.

Thus we also say Θ restricts exactly to Θ|P .

Theorem 4.1.7. Let P be a finite poset with MacNeille completion L(P ), and let Θ be an

equivalence relation on P . Then Θ is a congruence on P if and only if there is a congruence L(Θ)

on L(P ) which restricts exactly to Θ, in which case
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(i) L(Θ) is the unique congruence on L(P ) which restricts exactly to Θ, and

(ii) The MacNeille completion L(P/Θ) is naturally isomorphic to L(P )/L(Θ).

Proof. The “if” direction is Proposition 4.6.3.

Conversely, suppose Θ is a congruence on P and x ∈ L(P ). Let Px/Θ be the set of equivalence

classes in Θ which have non-empty intersection with Px. Define L(Θ) to be the equivalence relation

which sets x ≡ y if and only if Px/Θ = Py/Θ. More simply, Px/Θ is determined by Qx, the set

of elements of Q weakly below x. Here Q is the order-quotient associated to Θ, as in Section 5.

Thus x ≡ y if and only if Qx = Qy. Notice that for any x, y ∈ L(P ), Qx∧y = Qx ∩ Qy. Suppose

x1 ≡L(Θ) x2 and y1 ≡L(Θ) y2 in L(P ). Then

Qx1∧y1
= Qx1

∩Qy1
= Qx2

∩Qy2
= Qx2∧y2

,

and a dual argument shows that L(Θ) respects joins. Given any congruence class [a, b]P in Θ, the

element a of L(P ) is minimal among elements x of L(P ) with Qx = Qa, and dually, b is maximal.

Thus there is a congruence class [a, b]L(P ) in L(Θ). Any element of P is in some Θ-class, and so

L(Θ) restricts exactly to P .

Since P/Θ ∼= Q, the natural isomorphism between L(P/Θ) and L(P )/L(Θ) is easily seen by

identifying the elements of each lattice with order ideals in Q. The lattice L(Q) consists of Q and

intersections ∩q∈SDQ[q] for S ⊆ Q, and S may as well be an order filter. Elements of L(P )/L(Θ)

are X ∩Q, where X = P or X = ∩y∈TDP [y], where T is an order filter in P . But then X ∩Q is Q

or ∩y∈T (DP [y] ∩Q) = ∩y∈T∩QDQ[y], and T ∩Q ranges over all order filters in Q.

Let Φ be a congruence on L(P ) which restricts exactly to Θ. Proposition 4.6.3 says that L(P )/Φ

is a lattice containing P/Θ as a subposet. Since L(P )/L(Θ) is the MacNeille completion of P/Θ,

L(P )/Φ contains L(P )/L(Θ) as a subposet, and therefore Φ ⊆ L(Θ) (as relations). Suppose x ≡L(Θ)

y, or in other words Px/Θ = Py/Θ. Write x = ∨L(P )Px and y = ∨L(P )Py. Since Φ restricts to Θ

on P and respects joins, x ≡Φ y, and thus Φ = L(Θ).

4.7 Quotients and the tableau criterion

In this section, we give some necessary background information about quotients in Coxeter groups,

and about types A and B in particular. The reader should refer to [8] or [35] for proofs and details.

When J is any subset of S, the subgroup ofW generated by J is another Coxeter group, called the

parabolic subgroup WJ . When the generators of a Coxeter group are denoted as si, use shorthand

notations such as J = {1, 2, 4} to denote the subset {s1, s2, s4} ⊆ S. The following proposition

defines and proves the existence of two-sided quotients JWK , where J,K ⊆ S, and shows that such

quotients are order-quotients. The more widely used one-sided quotients can be obtained by letting

J = ∅. Parabolic subgroupsWJ with J = S−{s} for some s are called maximal parabolic subgroups.

Quotients with respect toWJ will be denotedW s and similarly for two-sided quotients. This should

not be confused with W {s}.
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Proposition 4.7.1. For any w ∈ W and J,K ⊆ S, the double coset WJwWK has a unique

Bruhat minimal element JwK . If W is finite, the subset JWK consisting of the minimal coset

representatives is an order-quotient of W .

Proof. The proof of the first statement can be found in [30, Proposition 8.3], where it is also shown

that w can be factored (non-uniquely) as wJ ·
JwK ·wK , where wJ ∈WJ and wK ∈WK , such that

l(w) = l(wJ ) + l(JwK) + l(wK). Let π↓ : W → JWK be the projection w 7→ JwK onto minimal

double coset representatives. We must show that π↓ is order-preserving: Suppose v ≤ w, and write

w = wJ ·
JwK · wK . Choose reduced words a, b and c for wJ ,

JwK , and wK respectively. Since

l(w) = l(wJ ) + l(JwK) + l(wK), abc is a reduced word for w. By the subword property, there is a

subword of abc which is a reduced word for v. This subword breaks into a′, b′ and c′, which are

subwords of a, b and c, respectively. Let x, y, and z be the respective elements represented by a′,

b′ and c′. Thus v = xyz, and since x ∈ WJ and z ∈ WK , we have y ∈ WJvWK . In particular,

y ≥ JvK , and by the subword property, y ≤ JwK , so JvK ≤ JwK .

If W is finite, then multiplication on the left by w0 is an anti-automorphism of W . If x ∈

WJwWK , write x = wJwwK . Then w0x = w0wJw0w0wwK , and w0wJw0 ∈ Ww0Jw0
, and so

w0x ∈ Ww0Jw0
w0wWK . Conversely, if x ∈ Ww0Jw0

w0wWK , then w0x ∈ WJwWK . Thus left-

multiplication by w0 acts as a Bruhat anti-isomorphism WJwWK
w0·7→ Ww0Jw0

wWK . The maximal

element of WJwWK is w0m, where m is the minimal element of Ww0Jw0
wWK . The projection π↑

onto the maximal element is order-preserving because it is w 7→ w0π↓(w0w).

In [32, 39] it is shown that join-irreducibles in the Bruhat order are always bigrassmannians.

That is, any join-irreducible x in W is contained in sW t for some (necessarily unique) choice of

s, t ∈ S. Thus Proposition 4.5.2 can be used to simplify the task of finding join-irreducibles and

dissectors in W .

Proposition 4.7.2. For a finite Coxeter group W under the Bruhat order:

(i) Irr(W ) = ∪s,t∈SIrr(
sW t) and

(ii) Dis(W ) = ∪s,t∈SDis(sW t).

Assertion (i) in Proposition 4.7.2 is due to Geck and Kim [32], who used it find the join-

irreducibles for the infinite families of finite Coxeter groups and to write a GAP [53] program to

compute the join-irreducibles of the other finite Coxeter groups.

Corollary 4.7.3. Let W be a finite Coxeter group. The following are equivalent:

(i) The Bruhat order on W is dissective.

(ii) The Bruhat order on JWK is dissective for any maximal parabolic subgroups J and K.

(iii) The Bruhat order on JWK is dissective for any parabolic subgroups J and K.
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Proof. This follows from Proposition 4.7.2 and the observation that J1WK1 ⊆ J2WK2 whenever

Jc
1 ⊆ Jc

2 and Kc
1 ⊆ Kc

2, where J
c := S − J .

We recall the classification of finite irreducible Coxeter groups, traditionally named with letters.

There are infinite families A, B and D, indexed by natural numbers n. There are also the exceptional

groups E6, E7, E8, F4, H3 and H4, and some groups I2(m) on two generators. We describe types A,

B and H here, and refer the reader to [8] or [35] for the other types. Types A and B are interpreted

as permutations. Since many of the permutations we refer to have long strings of values increasing

by one, the following notation is helpful: i —– j stands for i(i+ 1)(i+ 2) · · · j if i ≤ j or an empty

string of entries if i > j.

The Coxeter group An is isomorphic to the group Sn+1 of permutations of [n+1]. A permutation

x can be written in one-line notation x1x2 · · ·xn+1, meaning i 7→ xi for each i. The generators S

are the transpositions si := (i i+1), which switch the elements i and i+1 and fix all other elements.

It is easy to check that An is a Coxeter group with m(si, sj) = 3 for |i− j| = 1 and m(si, sj) = 2 for

|i− j| > 1. The length of an element is the inversion number #{(i, j) : i < j, xi > xj}. Multiplying

a permutation on the right by a generator si has the effect of switching the entry xi with the entry

xi+1. Multiplying on the left by si switches the entry i with the entry i+ 1.

Elements of Asi
n are permutations whose one-line notation increases from left to right except

possibly between positions i and i + 1. Bruhat comparisons in Asi
n can be made by entrywise

comparison of the entries from 1 to i. The tableau criterion characterizes Bruhat order on An as

follows: Let x = x1x2 · · ·xn+1, and form a tableau with rows Ta(x) for each a ∈ [n], such that

Ta(x) = (Ta,1, Ta,2, . . . , Ta,a) is the increasing rearrangement of {xi : i ∈ [a]}.

Proposition 4.7.4. x ≤ y if and only if Ta,b(x) ≤ Ta,b(y) for every 1 ≤ b ≤ a ≤ n.

The tableau T (x) is a special case of a monotone triangle. A monotone triangle of size n is a

tableau of staircase shape (written in the French style), with n rows and n columns, with entries

from [n + 1], such that rows are strictly increasing, columns are weakly decreasing and elements

are weakly increasing in the southeast (↘) direction. The permutations are exactly the monotone

triangles such that for every 1 ≤ b ≤ a < n, either Ta,b = Ta+1,b or Ta,b = Ta+1,b+1. The tableau

criterion states that Bruhat order is the restriction to permutations of componentwise order on

monotone triangles. There is a simple bijection between monotone triangles and alternating sign

matrices [49].

Given a permutation x = x1x2 · · ·xn+1, form α(x) = y1y2 · · · yn+1 according to yi = n+ 2− xi.

It is easily checked that α is the anti-automorphism w 7→ w0w of the Bruhat order. The operation

of α on tableaux is to replace each entry a by n+ 2− a, and to reverse the order of entries within

the rows.

For the purposes of order dimension there is a much better tableau criterion [8, Exercise 2.13]

than Proposition 4.7.4. Given a permutation in Asi
n the entrywise comparison of the entries from

1 to i is dual to the entrywise comparison of the entries from i + 1 to n + 1. Given x ∈ An define

a pair (L,R) of tableaux of staircase shape, where L is the increasing rearrangements of the initial
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segments of x of lengths ≤
⌊

n+1
2

⌋

, and R is the increasing rearrangements of the final segments of

x of lengths ≤ n−
⌊

n+1
2

⌋

.

Proposition 4.7.5. x ≤ y if and only if L(x) ≤ L(y) and R(x) ≥ R(y) componentwise.

Note that the existence of this “two-tableau criterion” is related to the existence of the symmetry

w 7→ w0ww0 in the Coxeter group An.

The total number of entries in (L,R) is

(
⌊

n+1
2

⌋

+ 1

2

)

+

(

n+ 1−
⌊

n+1
2

⌋

2

)

=

⌊

(n+ 1)2

4

⌋

.

Thus the bound dim(An) ≤
(n+1)2

4 was already known. However, the proof of Theorem 4.1.1 does not

explicitly use Proposition 4.7.5. In light of Theorem 4.1.1, from the viewpoint of order dimension this

two-tableaux criterion is an optimal encoding of Bruhat order. Whether this embedding is actually

the fastest way to compute Bruhat order is not quite the same question. Another simplification of

the tableau criterion is given in [9]. Here it is shown that for a given x, one need only consider

certain rows of T (x) and T (y), depending on the descents of x and y, to compare x to y. This

simplification does not affect order dimension, but may speed up computations.

An element w ∈ An is called 321-avoiding if any of the following equivalent [1, Theorem 2.1]

conditions holds:

(i) Let w correspond to a permutation with one-line form w1w2 · · ·wn+1. There exist no i, j, k

with 1 ≤ i < j < k ≤ n+ 1 such that wi > wj > wk.

(ii) Let a be a reduced word for w. For all i ∈ [n], between any two instances of si in a, the letters

si−1 and si+1 occur. In particular, s1 and sn each occur at most once.

(iii) Any two reduced words for w are related by commutations.

The following is immediate by characterization (iii):

Proposition 4.7.6. Let w be a 321-avoiding element of An, let s1s2 · · · sk be a reduced word for

w, and let si1si2 · · · sij
be a subword with |im − im+1| = 1 for every m ∈ [j − 1]. Then si1si2 · · · sij

occurs as a subword of every reduced word for w.

The Coxeter group Bn is the group of signed permutations. Signed permutations are permuta-

tions x of ±[n] := [−n, n]− {0} subject to the condition that x(a) = −x(−a) for each a ∈ [n]. The

one-line notation for a signed permutation x is x1x2 · · ·xn, meaning i 7→ xi for each i. The genera-

tors S are the transpositions si := (i i+1) for each i ∈ [n− 1], and the transposition s0 := (−1 1).

The group Bn is a Coxeter group with m(si, sj) = 3 for i, j ∈ [n− 1] with |i− j| = 1, m(s0, s1) = 4

and m(si, sj) = 2 for |i − j| > 1. Multiplying a permutation on the right by a generator si for

i ∈ [n − 1] has the effect of switching the entry xi with the entry xi+1. Multiplying on the left by

si switches the entry i with the entry i + 1. Multiplying on the right by s0 reverses the sign of x1

and multiplying on the left by s0 changes 1 to −1 and vice-versa.
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Elements of Bsi
n for i ∈ [n − 1] are signed permutations whose one-line notation is positive

and increasing in positions 1 to i, and increasing but not necessarily positive in positions i + 1

to n. Elements of Bs0
n are signed permutations whose one-line notation is increasing everywhere.

Bruhat comparisons in Bsi
n can be made by dual entrywise comparison of the entries from i + 1

to n. The signed tableau criterion [8] characterizes Bruhat order on Bn as follows: Let x ∈ Bn

have one-line notation x1x2 · · ·xn, and form a tableau with rows T̄a(x) for each a ∈ [n], such that

T̄a(x) = (T̄a,1, T̄a,2, . . . , T̄a,a) is the increasing rearrangement of {xi : i ∈ [n+ 1− a, n]}.

Proposition 4.7.7. x ≤ y if and only if T̄a,b(x) ≥ T̄a,b(y) for every 1 ≤ b ≤ a ≤ n.

The tableau criterion for Bn associates to each signed permutation in Bn a signed monotone

triangle of size n: A tableau of staircase shape, with n rows and n columns, with entries from ±[n],

with +i and −i never occurring in the same signed triangle. Also, the rows are required to be

strictly increasing, columns weakly decreasing and elements weakly increasing in the Southeast (↘)

direction. The signed permutations are exactly the signed monotone triangles such that for every

1 ≤ b ≤ a < n, either Ta,b = Ta+1,b or Ta,b = Ta+1,b+1. The tableau criterion for Bn states that

Bruhat order is dual to the restriction of componentwise order on the signed monotone triangles

associated to signed permutations.

The anti-automorphism w 7→ w0w takes a signed permutation x = x1x2 · · ·xn, to y = y1y2 · · · yn

according to yi = −xi. The corresponding operation on tableaux is to replace every entry a by −a

and to reverse the order of entries within the rows.

The two-tableaux criterion in type A was related to the symmetry w 7→ w0ww0. Since w 7→

w0ww0 is the identity on Bn, one might not expect to find a great improvement over the signed

tableau criterion. And indeed, the order dimension of Bn is not much lower than the upper bound

given by the signed tableau criterion.

4.8 Order dimension of Bruhat order on type A

In [39], Lascoux and Schützenberger show that Bruhat order on Coxeter groups of type A or B is

dissective and identify the join-irreducibles. In this section and the following section, we review

their results for types A and B, determine the partial order induced on Irr(An) and determine the

widths of Irr(An) and Irr(Bn). We then apply Theorem 4.1.2 to determine the order dimension of

the Bruhat orders on An and Bn and of all one-sided quotients.

For any 1 ≤ b ≤ a ≤ n, and b ≤ c ≤ n− a+ b+1, define Ja,b,c to be the componentwise smallest

monotone triangle such that the a, b entry is ≥ c. It is easily checked that the permutation

1 —– (b− 1)c —– (c+ a− b)b —– (c− 1)(c+ a− b+ 1) —– (n+ 1)

gives rise to a tableau which fits the description of Ja,b,c. If b = c, then Ja,b,c is the tableau associated

to the identity permutation. A monotone triangle T is the join of {Ja,b,Ta,b
: 1 ≤ b ≤ a ≤ n}. Thus

Irr(An) ⊆ {Ja,b,c : 1 ≤ b ≤ a ≤ n, b < c ≤ n− a+ b+ 1}.
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Given 1 ≤ b ≤ a ≤ n, and b < c ≤ n − a + b + 1, define Ma,b,c to be the componentwise

largest monotone triangle whose a, b entry is < c. The tableau Ma,b,c can be found by applying the

anti-symmetry w 7→ w0w to Ja,a−b+1,n+3−c. It is the permutation

(n+ 1) —– (n− a+ b+ 2)(c− 1) —– (c− b)(n− a+ b+ 1) —– c(c− b− 1) —– 1.

Thus each Ja,b,c for 1 ≤ b ≤ a ≤ n, and b < c ≤ n− a+ b+ 1 is a dissector with β(Ja,b,c) =Ma,b,c.

As a result,

Irr(An) = {Ja,b,c : 1 ≤ b ≤ a ≤ n, b < c ≤ n− a+ b+ 1},

An is dissective, and by Theorem 4.1.6, the MacNeille completion of An is the distributive lattice

of monotone triangles [39]. Thus the order-dimension of An under the strong order is equal to the

order dimension of the lattice of monotone triangles of the same size.

The partial order induced on Irr(An) is studied using the subword definition of Bruhat order. It

is convenient to fix a particular word for the maximal element of An, and also to write the word as

an array:

w0 =

s1

s2 s1

s3 s2 s1

· ·

· ·

· ·

sn sn−1 · · · s2 s1

Reading the array in the standard order for reading English text gives a word w0 = s1s2s1s3s2s1 · · · .

Elements of An are in bijection with left-justified subsets of the array. It is easily seen [32, 39] that

Irr(An) consists of left-justified rectangles in the array. That is, an element is join-irreducible if and

only if its left-justified form is:

sj sj−1 sj−2 · · · sj−i+1

sj+1 sj sj−1 · · · sj−i+2

· · · ·

· · · ·

· · · ·

sj+k−1 sj+k−2 sj+k−3 · · · sj+k−i

for some 1 ≤ i ≤ j ≤ n, and k ≤ n − j + 1. Counting such rectangles shows that there are
(

n+2
3

)

join-irreducibles in An. Refer to these rectangles and the corresponding irreducibles by the triples

(i, j, k). A triple (i, j, k) corresponds to the tableau Jj−i+k,j−i+1,j+1.

Example 4.8.1. The monotone triangle J5,3,5 in A7 and the corresponding rectangle (2, 4, 3) are

63



shown below. The corresponding permutation is 12567348.

1

1 2

1 2 5

1 2 5 6

1 2 5 6 7

1 2 3 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7 8

s4 s3

s5 s4

s6 s5

A criterion is given in [39] for deciding whether a given permutation is above a given join-

irreducible. For now, we are interested in an easy criterion for comparing two join-irreducibles. A

subrectangle of (i, j, k) is a rectangle that can be obtained by deleting columns from the left and/or

right of (i, j, k) and/or deleting rows from the top and/or bottom of (i, j, k).

Proposition 4.8.2. Join-irreducibles u = (i, j, k) and v = (i′, j′, k′) in An have u ≤ v if and only

if (i, j, k) is a sub-rectangle of (i′, j′, k′).

Proof. The “if” direction follows immediately from the subword property.

Suppose u ≤ v. The subword property requires that some reduced word for the rectangle (i, j, k)

be a subword of the rectangle-word for (i′, j′, k′). It is easily verified that (i, j, k) stands for a

321-avoiding element of An. Notice also that the rectangle form for (i, j, k) has a subword

sjsj−1 · · · sj−i+2sj−i+1sj−i+2 · · · sj−ik−1sj−i+k

which satisfies the hypotheses of Proposition 4.7.6. Therefore, the subword of (i′, j′, k′) which is a

reduced word for (i, j, k) must itself contain the same subword. For the word given by (i′, j′, k′)

to contain the letters sjsj−1 · · · sj−i+2sj−i+1 in that order, in particular, it must contain the letter

sj−i+1 somewhere after an occurrence of sj . Thus there is a row in the rectangle for v containing

sjsj−1 · · · sj−i+2sj−i+1. For the letters sj−i+2sj−i+1sj−i+2 · · · sj−ik−1sj−i+k to occur afterwards,

there must be at least k − 1 more rows.

There are four types of covers in Irr(An), corresponding to striking the left or right column or the

top or bottom row from a rectangle. Of course, a column can only be deleted if there is more than

one column present, and similarly for rows. Thus a rectangle (i, j, k) covers the following rectangles:

(i− 1, j, k) if i > 1,

(i− 1, j − 1, k) if i > 1,

(i, j + 1, k − 1) if k > 1,

(i, j, k − 1) if k > j.

The minimal rectangles are (1, j, 1) for j ∈ [n], and the maximal elements are (i, i, n − i + 1) for

i ∈ [n]. Also, Irr(An) is ranked by r(i, j, k) = i+k−1, with the lowest rank being 1 and the highest
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rank being n—a departure from the usual convention that minimal elements have rank zero. A

diagram of Irr(A4) is given in Figure 4.1.

The rank number Rr(Irr(An)) is determined by counting the number of ways to choose i, j and

k subject to the constraints:

1 ≤ i ≤ j ≤ n, 1 ≤ k ≤ n− j + 1 and i+ k − 1 = r.

Necessarily, i ∈ [r] (otherwise, i+ k − 1 ≥ i > r) and j must be chosen so that 1 ≤ i ≤ j ≤ n, and

1 ≤ r − i+ 1 ≤ n− j + 1, or equivalently, so that i ≤ j ≤ n+ i− r. Thus,

Rr(Irr(An)) = r(n− r + 1). (4.9)

The maximum rank number is Rbn+1
2 c

=
⌊

(n+1)2

4

⌋

. Thus, in order to verify the statement about

An in Theorem 4.1.1, it only remains only to prove Theorem 4.1.3, which asserts that Irr(An) has

a symmetric chain decomposition. In particular, Theorem 4.1.3 implies that Irr(An) is Sperner, so

its width is equal to its maximum rank number.

Proof of Theorem 4.1.3. Restrict to a weaker order on Irr(An), by allowing a rectangle (i, j, k) to

cover only

(i− 1, j, k) if i > 1 or,

(i, j, k − 1) if k > j.

In other words, restrict the covers by only allowing the rightmost column or the bottom row to be

deleted. Call this weaker order Irr′(An). Then Irr′(An) consists of n disjoint components, each of

which is isomorphic to a product of chains: For each j ∈ [n], there is a maximal element (j, j, n−j+1)

in Irr(An) and the interval below (j, j, n− j + 1) in Irr′(An) is isomorphic to the product of chains

[j]× [n− j +1]. Thus Irr′(An) has a symmetric chain decomposition. Since Irr′(An) is ranked with

the same rank function as Irr(An), the symmetric chain decomposition is inherited by Irr(An).

Incidentally, the covers in Irr′(An) are exactly the covers in Irr(An) which are order relations in

the right weak Bruhat order.

By Corollary 4.7.3, any one-sided or two-sided quotient of An is a dissective poset. The same

symmetric chain decomposition proves the following:

Theorem 4.8.3. The order dimension of a one-sided quotient AJ
n of An, is:

dim(AJ
n) =

∑

si∈(S−J)

min(i, n− i+ 1).

Proof. The symmetric chain decomposition given for Irr(An) arises from symmetric chain decom-

positions of the components of Irr′(An). Each such component is Irr(An)∩
sjW for some j. Thus

the same symmetric chain decomposition can be given to Irr(JW ) for any J . The quotients JW

and W J are isomorphic by the map which takes w to w−1.
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Figure 4.1: A diagram of Irr(A4). The dotted lines are covers which are not in Irr′(A4).

(4,4,1)(3,3,2)(2,2,3)(1,1,4)

(3,4,1)(2,3,2)(3,3,1)(1,2,3)(2,2,2)(1,1,3)

(2,4,1)(1,3,2)(2,3,1)(1,2,2)(2,2,1)(1,1,2)

(1,4,1)(1,3,1)(1,2,1)(1,1,1)

4.9 Order dimension of Bruhat order on type B

In this section, we determine the width of Irr(Bn), and thus the order dimension of Bn. The

calculation of the width of Irr(Bn) is complicated by the fact that Irr(Bn) is not graded. For

example, in Irr(B3) there are maximal chains of lengths 5 and 6. The width is calculated by

exhibiting a chain decomposition and an antichain of the same size. We describe the ordering on

Irr(Bn) only as far as is necessary. For convenience, the Coxeter generators S = {s0, s1, . . . , sn−1}

will be referred to as the integers in [0, n − 1], and complementation within S will be denoted by

the symbol c. Specifically, it is proven that

Theorem 4.9.1. The order dimension of a one-sided quotient BJ
n of Bn, is:

dim(BJ
n) =















∑

j∈Jc n− j if 0 ∈ J

bn+1
2 c+

∑

j∈J∗ n− j if 0 6∈ J, 1 ∈ J

n+
∑

j∈J∗ n− j if {0, 1} ∩ J = ∅,

where J∗ = Jc ∩ [2, n− 1].

A characterization of the join-irreducibles of Bn as reduced words is in [32, 39]. We will character-

ize them by tableaux in a manner similar to what was done in type A. Represent the join-irreducibles

by tableaux, as follows: For any 1 ≤ b ≤ a ≤ n, and −n+ b− 1 ≤ c ≤ n− a+ b, define Ja,b,c to be

the componentwise largest signed monotone triangle such that the (a, b) entry is ≤ c. Notice that

we specify the largest, as opposed to the smallest as in type A. If c = n− a+ b, this is the tableau

associated to the identity permutation. One can show that the Ja,b,c exist by constructing them.

Start by placing an entry c in the (a, b) position, and then move one position to the left and place

the largest entry allowed by the definition, and so on to first column. Then move to the right from

position (a, b) placing the largest possible entries. Construct row a− 1 from row a by deleting the
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smallest entry, and so on to row 1. Construct row a+ 1 from row a by placing the largest possible

remaining entry in the appropriate place in the row, and so on to row n. The reader is invited to

verify, by inspection of the tableau constructed on the following pages, that the construction indeed

produces a tableau answering the description of Ja,b,c. Notice that some join-irreducibles have more

than one representation as a Ja,b,c.

On the following pages are diagrams of the Ja,b,c which arise from this construction. The Ja,b,c

are represented with the following convention: In the tableaux, lines drawn from one entry i to

another entry i represent a line of entries i. Lines from i to j represent a line of entries changing

monotonically by ones. Entries not on these lines are filled in in the natural way with adjacent

entries differing by at most one. Four cases must be considered, depending on the value of c in

relation to a, b and n. The tableau and corresponding signed permutations for each case are shown

as Figures 4.2, 4.3, 4.4 and 4.5.

Any signed monotone triangle T is the join of {Ja,b,Ta,b
: 1 ≤ b ≤ a ≤ n}. The signed monotone

triangle Ja,b,n−a+b the unique minimal element of Bn, and so is not join-irreducible. Thus the

join-irreducibles are contained in the set

{Ja,b,c : 1 ≤ b ≤ a ≤ n,−n+ b− 1 ≤ c < n− a+ b}.

In fact, each such Ja,b,c is join-irreducible, because it is a dissector. Specifically, there exists Ma,b,c,

the componentwise smallest signed monotone triangle whose (a, b) entry is greater than c. It is

easily checked that Ma,b,c is the image of Ja,a−b+1,−c−1 under the anti-automorphism w 7→ w0w.

The set of signed monotone triangles is not closed under entrywise meet. For example, when

n = 4, The entrywise meet of J3,1,−2 and J3,3,3 has −2, 2, 3 as its third row. In particular, the

MacNeille completion of Bn is larger than the set of all signed monotone triangles.

The following proposition is the key to the upper bound on width(Irr(Bn)). It is easily verified

by inspecting the signed permutations given in Figures 4.2, 4.3, 4.4 and 4.5. Specifically, one checks

that the only decrease in values in the one-line notation occurs between positions (n − a) and

(n− a+ 1). One also checks the inverse signed permutation to verify that the only decrease occurs

between positions c and c− 1 for c > 0 and between positions −c− 1 and −c for c < 0.

Proposition 4.9.2. If c ≥ 1, a join-irreducible Ja,b,c is in Irr(Bn)∩
cBn−a

n . If c ≤ −1, a join-

irreducible Ja,b,c is in Irr(Bn)∩
−c−1Bn−a

n .

We now give a decomposition of Irr(Bn) into chains. For each fixed pair (a, b) with 1 ≤ b ≤ a ≤

n− 2, the set

{Ja,b,c : −n+ b− 1 ≤ c < n− a+ b}

is a chain in Irr(Bn). By Propositions 4.7.2 and 4.9.2, the remaining join-irreducibles are Irr(B
[2,n]
n ).

However, it is easier to give a chain decomposition of Irr([2,n]Bn), because by Propositions 4.7.2

and 4.9.2, Irr([2,n]Bn) is exactly the set of join-irreducibles with c ∈ {−2,−1, 1}. Any Ja,b,1 has

at least a “−2” in position (a, b − 1), if (a, b − 1) is a valid position in the tableau, so Ja,b,−2 is

componentwise greater than or equal to Ja,b+1,1. Thus for any d ∈ [n],

Jd,1,1 ≥ Jd,1,−1 ≥ Jd,1,−2 ≥ Jd,2,1 ≥ Jd,2,−1 ≥ Jd,2,−2 ≥ Jd,3,1 ≥ · · · .
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Figure 4.2: Ja,b,c for type B

Case 1: c ≥ b

1

c - b+1

c - b+1

c+1c

c

n - a+b+1c

n - a+b+1

n

n

n

n

The associated signed permutation, where ∗ marks the unique descent:

1 —– (c− b)(c+ 1) —– (n− a+ b)∗(c− b+ 1) —– c(n− a+ b+ 1) —– n

The inverse of this signed permutation:

1 —– (c− b)(n− a+ 1) —– (n− a+ b+ 1)∗(c− b+ 1) —– (n− a)(n− a+ b+ 1) —– n
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Figure 4.3: Ja,b,c for type B

Case 2: b ≥ c ≥ 1

1

1

1

b+1-b

-b

-c - 1

-c - 1

-c - 1

c

c

n - a+b+1c

n - a+b+1

n

n

n

The associated signed permutation, where ∗ marks the unique descent:

(b+ 1) —– (n− a+ b)∗(−b) —– (−c− 1)1 —– c(n− a+ b+ 1) —– n

The inverse of this signed permutation:

(n−a+ b− c+1) —– (n−a+ b)∗(−n+a− b+ c) —– (−n+a−1)1 —– (n−a)(n−a+ b+1) —– n
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Figure 4.4: Ja,b,c for type B

Case 3: −1 ≥ c ≥ a− n− 1

1 -c+b

-c+b

c - b+1

c - b+1

-c - 1

-c - 1

c

c

n - a+b+1c

n - a+b+1

n

n

n

The associated signed permutation, where ∗ marks the unique descent:

1 —– (−c− 1)(−c+ b) —– (n− a+ b)∗(c− b+ 1) —– c(n− a+ b+ 1) —– n

The inverse of this signed permutation:

1 —– (−c− 1)∗(−n+ a− b) —– (−n+ a− 1)(−c) —– (n− a)(n− a+ b+ 1) —– n
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Figure 4.5: Ja,b,c for type B

Case 4: a− n− 2 ≥ c

1c - b+1

c - b+1 n - a+1

n - a+1

c

c

c

-c - 1

-c - 1

-c - 1

-c+b

-c+b

-c+b

n

n

n

The associated signed permutation, where ∗ marks the unique descent:

1 —– (n− a)∗(c− b+ 1) —– c(n− a+ 1) —– (−c− 1)(−c+ b) —– n

The inverse of this signed permutation:

1 —– (n− a)(n− a+ b+ 1) —– (−c+ b− 1)∗(−n+ a− b) —– (−n+ a− 1)(−c+ b) —– n
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with the chain continuing through every Ja,b,c with a = d and c ∈ {−2,−1, 1}. In this way

Irr([2,n]Bn) is decomposed into n chains, and the inverse map w 7→ w−1 gives a decomposition of

Irr(B
[2,n]
n ) into n chains. The total number of chains is

(

n−1
2

)

+ n =
(

n
2

)

+ 1.

The best way to describe an antichain in Irr(Bn) is as a tableau, as in the examples below. The

tableau records the number c in position (a, b) for each Ja,b,c in the antichain. Any antichain can

be written as such a tableau, but obviously not every tableau is an antichain. The tableau below

represents a largest antichain in Irr(B6). Some of the elements in the antichain are J1,1,1, J2,1,−2,

J2,2,2, J3,1,−3, J3,2,1, J3,3,3, etc.

1

−2 2

−3 1 3

−4 −2 2 4

−5 −3 1 3 5

• • −1 • • •

In general, let A be the tableau with:

A(a, b) = 2b− a− 2 for 1 ≤ b ≤
a

2
≤
n− 1

2
,

A(a, b) = 2b− a for
1

2
≤
a

2
< b ≤ a ≤ n− 1,

A(n, b
n+ 1

2
c) = −1,

and the other n− 1 entries blank. The tableau A has
(

n+1
2

)

− (n− 1) =
(

n
2

)

+ 1 non-blank entries.

Thus the following proposition completes the calculation of the width of Irr(Bn).

Proposition 4.9.3. A is an antichain of size
(

n
2

)

+ 1 in Irr(Bn).

Proof. This is equivalent to saying that for any non-blank entry c in position (a, b) in A, every other

non-blank entry in A strictly less than the corresponding entry in Ja,b,c. The proof breaks into

cases according to the entries of A, and relies on the specific forms of the Ja,b,c. The argument is

simplified by considering “regions” in the Ja,b,c.

A region whose entries are constant along northwest–southeast diagonals and decrease by exactly

one when moving one position to the left will be called a diagonal region. For each diagonal region,

it is sufficient to show that the entry in the lowest, rightmost position in the region is greater than

the corresponding entry in A. This is because the entries in A decrease in the northwest direction

and decrease by at least two when moving one position to the left. A region whose entries are

constant along columns and decrease by exactly one when moving one position to the left will be

called a vertical region. For each vertical region, it is sufficient to check the topmost, rightmost

entry, because entries in A decrease down columns and decrease by at least two when moving one

position to the left. These special corner of regions will be called active corners. To avoid confusion,

we apply this simplification only to the part of A with a < n and treat the entry in row n separately.
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In each of the four cases of the Ja,b,c, position (a, b) is the active corner of both a diagonal region

and a vertical region. For these regions, the fact that the active corner has entry c is enough to

guarantee that the other entries in the region are strictly greater than the corresponding entries in

A.

First, consider position (n, bn+1
2 c) in A, with entry −1. The corresponding monotone triangle

falls into Case 3, and there are two regions, both diagonal, that intersect the non-blank entries of

A. One has active corner (n− 1, n− 1) with entry n, as compared to the entry n− 1 in A, and the

other has active corner (n− 1, bn+1
2 c − 1), with entry −1 as opposed to −2 or −3 in A.

The positive entries c in A occur in positions (a, b) with c ≤ b, so all of these fall into Case

2. The only positions one needs to check are position (n − 1, n − 1) with entry n greater than the

corresponding entry n− 1 in A, and position (a, b− c) with entry −c− 1. The entry A(a, b) is c and

entries in A decrease by at least 2 when moving one position to the left, with a decrease of 4 when

moving left from a positive entry to a negative entry. Thus A(a, b−c) is at most c−2c−2 = −c−2.

The entry of Ja,b,c at position (n, bn+1
2 c) is greater than −1, because no negative entries occur in

Ja,b,c except in the first b− c columns, and b− c = b− (2b− a) = a− b < a
2 ≤

n−1
2 .

The positions (a, b) with a negative entry c in A fall into Cases 3 and 4. In either Case 3 or Case

4, the argument is the same. The entry of Ja,b,c at position (n, bn+1
2 c) is greater than −1, because

no negative entries occur in Ja,b,c except weakly to the left of column b, but b ≤ n−1
2 . Position

(n− 1, n− 1) passes as before, and position (n− 1, b− c− 2) of Ja,b,c has entry −c− 1. But entries

in A increase by 2 when moving one position to the right, except that the increase when moving

right from a negative entry to a positive entry is 4. So the entry at position (a, b − c − 2) in A is

c+2(−c−2)+2 = −c−2 and the entry at (n−1, b− c−2) is no greater. This argument fails when

c = −2, because b − c − 2 = b and there is no extra increase due to moving right from a negative

entry to a positive entry. However, in this case, the region is a single entry in row n.

The argument given above also accomplishes much of the work for determining the order dimen-

sion of quotients of Bn, and the rest Theorem 4.9.1 is proven by similar methods. It is necessary to

prove the following proposition on join-irreducibles Ja,b,c with a = n.

Proposition 4.9.4. If c > 0, then Jn,b,c = Jn,b−c,−c−1 (and one of these exists and is non-trivial

if and only if the other exists and is non-trivial).

Proof. Existence and non-triviality of Jn,b,c is exactly the inequalities 1 ≤ b ≤ n and −n+ b− 1 ≤

c ≤ b− 1. Existence and non-triviality of Jn,b−c,−c−1 is exactly the inequalities 1 ≤ b− c ≤ n and

−n+ b− c− 1 ≤ −c− 1 ≤ b− c− 1. This second set of inequalities is equivalent to 0 ≤ b ≤ n and

−n + b ≤ c ≤ b − 1. However, when c > 0, both −n + b ≤ c and −n + b − 1 ≤ c are redundant

inequalities. Also, 0 < c ≤ b− 1 implies b ≥ 1, and thus the two sets of inequalities are equivalent.

Now we must show that in any signed monotone triangle T , we have T (n, b) ≤ c if and only

if T (n, b − c) ≤ −c − 1. Suppose T (n, b) ≤ c and suppose for the sake of a contradiction that

T (n, b− c) ≥ −c. Since rows are strictly increasing, the c+1 entries in row n columns b− c through

b are all between −c and c. But since no entry can occur along with its negative, there are only
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c possible entries for the c + 1 positions. This contradiction shows that T (n, b − c) ≤ −c − 1.

Conversely, suppose that T (n, b − c) ≤ −c − 1 and suppose for the sake of a contradiction that

T (n, b) ≥ c + 1. Then the n − c + 1 positions in row n, columns 1 through b − c and columns b

through n have have entries in ±[c + 1, n]. There are only n − c possible entries for the n − c + 1

positions, and this contradiction finishes the proof.

We conclude this section with the:

Proof of Theorem 4.9.1. For 0 ∈ J , an antichain of the correct size is obtained by restricting A

to the rows a ∈ Jc. A chain decomposition of the same size is obtained by restricting the chains

which arise from the tableau criterion. When {0, 1} ∩ J = ∅, an antichain of the correct size is

again obtained by restricting A to the rows a with a ∈ J c, and a chain decomposition is obtained

by restricting the chain decomposition given above for Irr(Bn).

The case 0 6∈ J , 1 ∈ J requires a new construction. The same chain decomposition of Irr(B
{0,1}
n )

can be used, and a chain decomposition of Irr(B
[n−1]
n ) is as follows: By Proposition 4.9.2, Irr(B

[n−1]
n )

consists of irreducibles Ja,b,c with a = n, and by Proposition 4.9.4 we may as well assume that c < 0.

For each i with 1 ≤ i ≤ bn+1
2 c, the following inequalities hold whenever the Ja,b,c’s mentioned exist:

Jn,1,−2i+1 ≥ Jn,1,−2i ≥ Jn,2,−2i+1 ≥ Jn,2,−2i ≥ · · · Jn,n,−2i+1 ≥ Jn,n,−2i,

This is because Jn,b,c has at most c−1 in the (n, b−1) position. Thus Irr(B
[n−1]
n ) can be decomposed

into bn+1
2 c chains.

To conclude the proof, we need to exhibit an antichain in Irr(B
{1}
n ) whose intersection with each

Irr(Bj
n) has size n− j for j ≥ 2 and bn+1

2 c for j = 0. This is done by representing the antichain as

a tableau with
⌊

n+1
2

⌋

entries in row n, no entries in row n− 1 and all other rows full.

Let A′ be the tableau with:

A′(a, b) = 2b− a− 2 for 1 ≤ b ≤
a

2
≤
n− 2

2
,

A′(a, b) = 2b− a for
1

2
≤
a

2
< b ≤ a ≤ n− 2,

A′(n, b) = 2b− n− 2 for 1 ≤ b ≤
n+ 1

2
,

with row n− 1 and the other entries in row n blank. For example, if n = 6, this is:

1

−2 2

−3 1 3

−4 −2 2 4

• • • • •

−6 −4 −2 • • •

The first n− 2 rows of A′ are identical to the first n− 2 rows of A, so we need only check that

the signed monotone triangles represented by the entries in row n are incomparable with each other

and with the entries in the other rows.
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When n is odd the position (n, n+1
2 ) in A′, with entry −1, gives a J which has larger entries

than rows 1 through n − 2 of A′, as was already checked in the previous proof. Now, consider

position (n, b) for 1 ≤ b < n+1
2 , with entry 2b− n− 2, which corresponds to Jn,b,2b−n−2 in Case 4.

The entries directly to the right of (n, b) in A′ are negative, but every entry to the right of (n, b) in

Jn,b,2b−n−2 is positive. We must also compare entries in A′ with entries in Jn,b,2b−n−2 in positions

(n−2, b−2), (n−2, n− b−1) and (n−2, n−2). In position (n−2, b−2), Jn,b,2b−n−2 has 2b−n−2

while A′ has 2(b − 2) − (n − 2) − 2 = 2b − n − 4. In position (n − 2, n − b − 1), Jn,b,2b−n−2 has

n + 2 − 2b − 1 = n − 2b + 1, while A′ has at most 2(n − b − 1) − (n − 2) = n − 2b. In position

(n− 2, n− 2), Jn,b,2b−n−2 has n, while A′ has n− 2.

The positive entries c in rows 1 through n− 2 of A′ occur in positions (a, b) with c = 2b− a ≤ b,

so all of these fall into Case 2. It suffices to check the entries at positions (n, b) and (n, b − c). In

position (n, b), Ja,b,c has c > 0, while A′ has a negative or blank entry. In position (n, b− c), Ja,b,c

has −c− 1 = a− 2b− 1, while A′ is blank or 2(b− c)− n− 2 = 2a− 2b− n− 2. Since a < n+ 1,

2a− 2b− n− 2 < a− 2b− 1.

The positions (a, b) with a negative entry c in A′ fall into Cases 3 and 4. Columns to the right

of b in Ja,b,c have positive entries, so we need only check that A′ has an entry less than c at position

(n, b). But c = 2b− a− 2, while the entry in A′ is 2b− n− 2.

4.10 Order dimension of Bruhat order on other types

Type H

Type H contains two groups H3 and H4, the symmetry groups of the icosahedron and the 600-cell

respectively. As a Coxeter group, H3 has generators s1, s2, s3 and with m(s1, s2) = 5, m(s2, s3) = 3

and m(s1, s3) = 2. The Coxeter group H4 has generators s1, s2, s3, s4 and with m(s1, s2) = 5,

m(s2, s3) = 3, m(s3, s4) = 3 and m(s, t) = 2 for all other pairs.

Since H3 and H4 are dissective, their order dimensions can be calculated as the width of their

subposet of irreducibles. We used the GAP [53] program brbase [32] and the package CHEVIE [31] to

find Irr(H3) and Irr(H4). Then we used a program written in Prolog to calculate widths, obtaining

the results in Theorem 4.1.1. The width of Irr(H3) was easy to calculate, but calculating the width

of Irr(H4) by brute force proved to be too much even for a very fast computer. (After two weeks,

the computer managed to find an antichain of size 24). However, notice that in type B,

width(Irr(Bn)) = width(Irr(B[2,n−1]
n )) +

∑

i∈[2,n−1]

width(Irr(Bi
n)).

The computer verified that for H3,

width(Irr(H3)) = width(Irr(H
{3}
3 )) + width(Irr(H

{1,2}
3 )) = 4 + 2.

Thus one might hope to make the calculation smaller by calculating the analogous quotients for H4.
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The computer found:

width(Irr(H
{1,2,3}
4 )) = 3

width(Irr(H
{1,2,4}
4 )) = 7

width(Irr(H
{3,4}
4 )) = 15.

Since Irr(H4) = Irr(H
{1,2,3}
4 ) ∪ Irr(H

{1,2,4}
4 ) ∪ Irr(H

{3,4}
4 ), these calculations give an upper bound

width(Irr(H4)) ≤ 25. Then the computer was able to find an antichain of size 25 in Irr(H4) by

considering unions with one antichain from each of the three quotients. Thus,

width(Irr(H4)) = width(Irr(H
{3,4}
4 )) + width(Irr(H

{1,2,3}
4 )) + width(Irr(H

{1,2,4}
4 )) = 25.

Type I

Type I consists of the dihedral groups, each with two generators s and t. The m in I2(m) is m(s, t).

In I2(m), every element except the identity and w0 is a dissector. The group I2(6) is also called G2.

The width of I2(m) itself is 2, making the order dimension calculation trivial.

Types D, E and F

Theorem 4.1.5 enables the computer to set bounds on the order dimensions of some groups of types

D, E and F. We used brbase to find the bigrassmannians of several groups, and then used a Prolog

program to find Irr and Dis and calculate widths. The results are:

6 ≤ dim(D4) ≤ 9

10 ≤ dim(D5) ≤ 14

14 ≤ dim(D6) ≤ 22

18 ≤ dim(D7)

14 ≤ dim(E6) ≤ 26

18 ≤ dim(E7)

10 ≤ dim(F4) ≤ 12.

Further width calculations were beyond the ability of a fast computer to perform even for run times

of about two weeks. Also, it appears that the bounds obtained in this way continue to worsen with

increasing numbers of generators, because the number of join-irreducibles appears to grow more

rapidly than the number of dissectors.
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4.11 Further questions

Bruhat order and alternating sign matrices

1. Determine the order dimension of

(a) The Bruhat order on the other finite Coxeter groups. Give a uniform treatment, inde-

pendent of the classification.

(b) Intervals in the Bruhat order.

(c) Two-sided quotients of types A, B and H. These are all dissective by Corollary 4.7.3. All

of the two-sided quotients by maximal parabolic subgroups in type A are one-dimensional.

(d) The weak Bruhat order on a finite Coxeter group. The lower bound given by The-

orem 4.1.5 is just the number of generators, and the upper bound of Theorem 4.1.5

appears to be much larger than the known upper bound—the number of reflections (cf.

[8, Exercise 3.2]). For type A, the order dimension of the weak Bruhat order was de-

termined by Flath [29] in 1993. Recently, using methods from the study of hyperplane

arrangements, the author determined the order dimension of the weak Bruhat order for

types A and B [47]. For both of these types, the order dimension is equal to the number

of generators.

2. Some ideals in Irr(An) correspond to elements of An and some do not. Give a purely order-

theoretic characterization of the order ideals which are elements of An. A necessary but not

sufficient condition on an ideal I ⊆ Irr(An) is that max(I) ∪min(Ic) is an antichain.

3. What statistic on permutations is |Ix|, the number of join-irreducibles below x ∈ An? The

distributions for n = 1, 2 and 3 are:

1 + q,

1 + 2q + 2q3 + q4,

1 + 3q + q2 + 4q3 + 2q4 + 2q5 + 2q6 + 4q7 + q8 + 3q9 + q10.

4. The MacNeille completion L(An) is the componentwise order on monotone triangles, which

biject with alternating sign matrices. Does L(Bn) have any connection to alternating sign

matrices with symmetry conditions? Since the set of signed monotone triangles is not closed

under entrywise meet, L(Bn) is larger than the set of all signed monotone triangles. Okada [44]

has type-B and type-C Weyl denominator formulas which are expressed in terms of alternating

sign matrices with half-turn symmetry. However, the numbers of such matrices do not agree

with the number of order ideals in Irr(Bn).

5. Study the lattice quotients induced on the componentwise order on monotone triangles by

quotients of the Bruhat order on An, as in Theorem 4.1.7. This is not as simple as one might

guess. For example, the congruence on A3 obtained from the subgroup {1, s1} induces a lattice
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congruence on the lattice of monotone triangle which has 15 congruence classes, rather than

the 12 one would expect.

Order dimension

1. Is there any condition weaker than requiring that a poset P be dissective, that would imply

dim(P ) = width(Irr(P ))? Is there any condition that would imply dim(P ) = width(Dis(P ))?

2. Develop efficient algorithms for finding the critical complex of a poset. If this can be done,

covering sets, and thus order dimension, can in principle be determined or approximated by

linear programming [34].

Lattice properties for posets

1. Find other naturally occurring examples of dissective posets. One possibility is the “Bruhat

order” on complete matchings on [2n] defined in [17], which is dissective at least for n ≤ 3.

2. What is the right generalization of modularity to posets [38]? In other words, is there a simple

order-theoretic condition on P that is equivalent to requiring that L(P ) be modular?

3. Find other naturally occurring examples of congruences and quotients of non-lattices.

4. The lattice Con(L) of congruences of a lattice L has been studied extensively [33]. Similar

questions can be asked about the poset Con(P ) of congruences of a poset. Also, how is Con(P )

related to Con(L(P ))?
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