1 (30 pts) A company makes cans for soda with a volume of 175π cm3. To cut costs, the company wants to minimize the amount of material needed to make the can. In other words, the objective is to minimize the surface area of the can.

A (5 pts) Sketch the can.
B (5 pts) Find the objective function.
C (5 pts) Find the constraint function.
D (5 pts) Simplify and minimize the objective function.
E (5 pts) Check that the point found is a minimum.
F (5 pts) Find all dimensions (height and radius) of the can.

2 (25 pts) The size of a butterfly population $P(t) = P_0e^{kt}$, where the population is 500 at time 0. After 10 days the population size has grown to 750.

A (5 pts) What is P_0?
B (5 pts) What is k?
C (5 pts) Write the equation for $P(t)$ using the values for P_0 and k predicted above.
D (5 pts) Find the doubling time for the population?
E (5 pts) What is the population after 30 days?

3 (25 pts): Integrate the following functions

A (5 pts)
$$\int (x^4 - 6x^2 + 2x + 1) \, dx$$

B (5 pts)
$$\int \left(\frac{1}{\sqrt{x}} + \sqrt{x} \right) \, dx$$

C (5 pts)
$$\int (3e^{3x} - e^{-x}) \, dx$$

D (5 pts)
$$\int_0^{\pi} (\cos(4x) + \sin(2x)) \, dx$$

E (5 pts)
$$\int \left(\frac{1}{x + 3} + (3x + 4)^2 \right) \, dx$$
4 (25 pts): Let \(f(x) = \sqrt{x} \), the objective is to integrate this function for \(2 \leq x \leq 4 \) using Riemann sums and average values.

A (5 pts) Assume that 4 intervals is needed. Draw the intervals and calculate \(\Delta x \).
B (5 pts) Calculate the Riemann sum using the midpoint rule.
C (5 pts) Compare your result with direct integration.
D (5 pts) For the same function calculate the average value over the same interval.
E (5 pts) Prove the formula for the average value using the fundamental theorem of calculus.

5 (25 pts): Let \(f_1(x) = x^2 + 2 \) and \(f_2(x) = 6 \)

A (5 pts) Sketch the functions \(f_1 \) and \(f_2 \).
B (5 pts) How many sub-areas are spanned for \(-3 \leq x \leq 3 \).
C (5 pts) Calculate the area between the functions \(f_1 \) and \(f_2 \) for \(-3 \leq x \leq 3 \).
D (5 pts) For \(f_1(x) \) calculate the solid of revolution for \(0 \leq x \leq 1 \).
E (5 pts) Sketch the solid of revolution.