Ph.D. Students:

- Christina E. Erbacher,
*Root Multiplicities of the Indefinite Kac-Moody algebra $HD_4^{(3)}$*,

Ph.D. thesis, N.C. State University, 2012.

- Evan A. Wilson,
*Root Multiplicities of the Indefinite Kac-Moody algebra $HD_n^{(1)}$,*

Ph.D. thesis, N.C. State University, 2012.

- Rebecca L. Jayne,
*Maximal Dominant Weights of some Integrable Modules for the Special*, Ph.D. thesis, N.C. State University, 2011.

Linear Affine Lie algebras and their multiplicities

- Jonathan D. Dunbar,
*The Affine Lie Algebra sl(n, C) and its Z-algebra representation*,

Ph.D. thesis, N.C. State University, 2011 (Co-Chair, N. Jing).

- Julie Beier,
*Crystals for Demazure Modules of special linear quantum affine algebras*,

Ph.D. thesis, N.C. State University, 2008.

- William Cook, Affine Lie algebras, Vertex operator
algebras andcombinatorial identities,

Ph.D. thesis, N.C. State University, 2005.

- Vicky Williams, Root multiplicities of the indefinite
Kac-Moody Lie algebra $HC_n^{(1)}$,

Ph.D. thesis, N.C. State University, 2003.

- Jennifer Hontz, Root multiplicities of some Kac-Moody Lie
algebras

of indefinite type, Ph.D. thesis, N.C. State University, 1998.

- Robert Harger, Realization
of level two integrable highest weight representations

of the affine Lie algebra $A_7^{(2)}$, Ph.D. thesis, N.C. State University, 1996.

- Maegan Bos, Embedding
of affine Lie algebra representations and principal characters,

Ph.D. thesis, N.C. State University, 1994.

- Daya.S. Singh, Transitive
maps from linearly ordered sets to Dynkin diagrams,

Ph.D. thesis, N.C. State University, 1988 (Co-Chair, M. Putcha).

M.S. Students:

- Cyrus McCarter, The
Kac-Moody Lie algebra $A^{(1)}_1$ and its Vertex operator representations,

M.S. thesis, N. C. State University, 1991.

- John Taylor, Partition
identities and hard hexagon model

M.S. thesis, N. C. State University, 1990.