12.6 Surface Area

* Area of a surface S with position vector $\mathbf{r}(u,v)$ is

$$\iint_S \left| \mathbf{r}_u \times \mathbf{r}_v \right| \, du \, dv$$

* If S is given by $z = f(x,y)$ then the area of S is

$$\iint_D \sqrt{1 + \left(\frac{\partial z}{\partial x} \right)^2 + \left(\frac{\partial z}{\partial y} \right)^2} \, dA$$

Examples from Calculus: Early Transcendental Functions By Larson, Hostetler, Edwards

Ex 1 Find the area of the portion of the paraboloid $z = 16 - x^2 - y^2$ in the 1st octant.

* Our surface is $z = 16 - x^2 - y^2$ so we can use our shortcut.

$$\left| \mathbf{r}_x \times \mathbf{r}_y \right| = \sqrt{1 + (-2x)^2 + (-2y)^2} = \sqrt{1 + 4x^2 + 4y^2}$$

z depends on x and y, so our domain is given by what is going on in the xy plane. Imagine taking the portion of our surface above the xy plane and also in the 1st octant and smooshing it onto the xy-plane. This would give us xy-plane $\Rightarrow z = 0$ so $16 = x^2 + y^2 = r^2$

* Using polar coordinates we get

$$\text{Surface area} = \int_0^\pi \int_0^4 \sqrt{1 + 4r^2} \, r \, dr \, d\theta$$
Note! We could have described $z = 16 - x^2 - y^2$
with polar coordinates from the start.

$Z = 16 - r^2$

$x = r \cos \theta$

$y = r \sin \theta$

$\vec{r}_0 = \langle -r \sin \theta, r \cos \theta, 0 \rangle$

$\vec{r}_r = \langle \cos \theta, \sin \theta, -2r \rangle$

$\vec{r}_e \times \vec{r}_r = \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
-r \sin \theta & r \cos \theta & 0 \\
\cos \theta & \sin \theta & -2r
\end{vmatrix} = \langle -2r^2 \cos \theta, -2r^2 \sin \theta, -r^2 \rangle$

$|\vec{r}_e \times \vec{r}_r| = \sqrt{(-2r^2 \cos \theta)^2 + (-2r^2 \sin \theta)^2 + (-r)^2}$

$= \sqrt{4r^4 + r^2}$

$= r \sqrt{4r^2 + 1}$

$A(S) = \iint_{S_D} |\vec{r}_e \times \vec{r}_r| \, dr \, d\theta = \iint_{S_D} \left(4\pi \int_{S_0} \frac{r}{\sqrt{4r^2 + 1}} \right) dr \, d\theta$

$\times \text{ We didn't need to put } r \, dr \, d\theta$

since by the definition we just need

$|\vec{r}_e \times \vec{r}_r| \, dr \, d\theta$. It is when we convert

to polar coordinates after the

cross product we need $r \, d\theta \, dr$, since

dy \, dx = r \, d\theta \, dr$. Obviously the 1st method

was much easier. \times
Ex2] Find the area of the surface of the cylinder \(f(x, y) = 9 - y^2 \) that lies above the triangle bounded by \(y = x, \ y = -x, \ \text{and} \ y = 3 \).

Surface is \(z = 9 - y^2 \). We can use the shortcut

\[
|\mathbf{r}_x \times \mathbf{r}_y| = \sqrt{1 + (0)^2 + (-2y)^2} = \sqrt{1 + 4y^2}
\]

Now we need to find \(D \)

\[
\begin{align*}
D &= \{ (x, y) \mid y = x \text{ or } x = y, y = 3 \} \\
\end{align*}
\]

This is most easily described as a type II region

\[
\int_0^3 \int_{-y}^3 \sqrt{1 + 4y^2} \, dx \, dy = \int_0^3 2y \sqrt{1 + 4y^2} \, dy
\]

\[
U = 1 + 4y^2
\]

\[
\frac{1}{8} du = 8y \, dy
\]

\[
= \frac{1}{8} \int_1^{37} 2u^{1/2} \, du
\]

\[
= \frac{1}{4} \left[\frac{2}{3} u^{3/2} \right]_1^{37}
\]

\[
= \frac{1}{6} \left[\frac{2}{3} (37^{3/2} - 1) \right]
\]

\[
= \frac{1}{6} \left[\frac{2}{3} (37^{3/2} - 1) \right]
\]
Ex 3: Find the area of the portion of the sphere $x^2+y^2+z^2=25$ inside the cylinder $x^2+y^2=9$

Surface: $x^2+y^2+z^2=25$

Solve for z & use the shortcut $z = \sqrt{25-x^2-y^2}$

Note: This only gives us the surface above $z=0$. We will need to multiply our result by 2 to get the area of the whole region.

$$\left| \int x \times y \right| = \sqrt{1 + \left(\frac{-x}{\sqrt{25-x^2-y^2}} \right)^2 + \left(\frac{-y}{\sqrt{25-x^2-y^2}} \right)^2}$$

$$= \sqrt{\frac{25-x^2-y^2}{25-x^2-y^2} + \frac{x^2}{25-x^2-y^2} + \frac{y^2}{25-x^2-y^2}}$$

$$= \frac{5}{\sqrt{25-x^2-y^2}}$$

D is again polar coordinate will make this problem easy (relatively)

$$SA = \int_0^{2\pi} \int_0^3 \frac{5}{\sqrt{25-r^2}} r \, dr \, d\theta$$

$u = 25-r^2$, $u(0) = 25$, $u(3) = 16$

$du = -2r \, dr$

$\frac{1}{2} \, du = r \, dr$
\[S(A) = 2 \int_S \int_{25}^\infty \frac{5}{\sqrt{u}} \, du \, d\theta \]
\[= \int_0^{2\pi} \int_{16}^{25} 5u^{-1/2} \, du \, d\theta \]
\[= 2\pi \left[10\sqrt{u} \right]_{16}^{25} = 20\pi \left[5 - 4 \right] = 20\pi \]

EX4 From Stewart's Calculus p900

*38. Set up an integral for the area of the parametric surface given by the vector function

\[\mathbf{r}(u, v) = v^2 \mathbf{i} - uv \mathbf{j} + u^2 \mathbf{k} \quad 0 \leq u \leq 3 \]
\[-3 \leq v \leq 3 \]

Sadly our shortcut won't work here

\[\mathbf{r}_u = \langle 0, -v, 2u \rangle \]
\[\mathbf{r}_v = \langle 2v, -u, 0 \rangle \]

\[\mathbf{r}_u \times \mathbf{r}_v = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & -v & 2u \\ 2v & -u & 0 \end{vmatrix} = \langle 2u^2, -4uv, 2v^2 \rangle \]

\[\left| \mathbf{r}_u \times \mathbf{r}_v \right| = \sqrt{4u^4 + 16u^2v^2 + 4v^4} \]

If this were an 8 we could factor this—alas.

\[S(A) = \int_0^3 \int_{-3}^3 \sqrt{4u^4 + 16u^2v^2 + 4v^4} \, dv \, du \]