21.T. Lada and M. Tolley, Derivations of homotopy algebras, Archivum Mathematicum (Brno), Tomus 49, 309-315 (2013).

20. M. Allocca and T. Lada, A finite dimensional A-infinity algebra exampl, Georgian Mathematical Journal Vol 12 No 1, 1 - 12 (2010)

19. K. Bering and T. Lada, Examples of homotopy Lie algebras, Archivum Mathematicum (Brno), Tomus 45 (2009), 287-299

18. T. Kadeishvili and T. Lada, A Small Open-closed Homotopy Algebra (OCHA), Georgial Mathematical Journal 16, No. 2, 305-310 (2009)

17.   M. Daily and T. Lada, Symmetrization of brace algebras, Rendiconti Del Circolo Matematico Di Palermo, Serie II, Suppl. 79, 75-86 (2006).

16   M. Daily and T. Lada, A finite dimensional L-infinity algebra example in gauge theory,  Homology, Homotopy and Applications, vol.7(2), 87-93  (2004).

15.   T. Lada, L-infinity algebra representations, Applied Categorical Structures 12, 29-34 (2004).

14.   T. Lada and M. Markl, Symmetric brace algebras, Applied Categorical Structures, 13(4), 351-370 (2005)

13.   R. Fulp, T. Lada and J. Stasheff, Noether's variational Theorem II and the BV formalism,  Rendiconti Del Circolo Matematico Di Palermo, Serie II, Suppl. 71, 115-126 (2003).

12.   R. Fulp, T. Lada and J. Stasheff, Sh-Lie algebras induced by gauge transformations, Communications in Math Physics 231, 25-43 (2002).

11.   G. Barnich, R. Fulp, T. Lada and J. Stasheff, Algebra structures on Hom(C,L), Communications in Algebra 28,  5481-5501  (2000).

10.   T. Lada, Commutators of A-infinity structures. Contemp Math 227,  227-233 (1999).

9.    G. Barnich, R. Fulp, T. Lada and J. Stasheff, The sh Lie structure of Poisson brackets in field theory,  Communications in Math Physics 191, 585-601 (1998).

8.   T. Lada and M. Markl, Strongly homotopy Lie algebras.  Communications in Algebra, 23, 2147-2161 (1995).

7.   P. Goerss and T. Lada, Relations among homotopy operations for simplicial commutative algebras, Proc. AMS, Vol. 123, N0. 9, 2637-2641 (1995).

6.   T. Lada and J. Stasheff, Introduction to sh Lie algebras for physicists. Int. J. Theo. Phys. 32, 1087-1103 (1993).

5.   D. Kraines and T. Lada, The cohomology of the Dyer-Lashof algebra, Contemp. Math. 19, 145-152 (1983).

4.   D. Kraines and T. Lada, Applications of the Miller spectral sequence,  Conference Proceedings of the Canadian Math Society, Vo.2, Part 1 (1982).

3.   D. Kraines and T. Lada, A counterexample to the transfer conjecture, Lecture Notes in Math, Vol. 741, 588-624 (1979).

2.   T. Lada, An operad action on infinite loop space multiplication, Canadian Jour. of Math. 29, No. 6, 1208-1216 (1977).

1.   T. Lada, Strong homotopy algebras over monads, Lecture Notes in Math, Vol. 533, 399-479 (1976).