This lab deals with network security and firewall design. It consists of two independent parts: 4A on public key authentication with ssh and 4B on firewall design with the iptables service. Read the rules for completing and submitting parts 4A and 4B of this assignment carefully.

Part 4A

Do this part of the lab exercise with your group members. Configure your account to use public key authentication with the Secure Shell network service.

1. Suppose your account name is a. Ask one of the other groups to give you an account named a on their host (Do not use the intruder account for this purpose). Let x denote your host and y denote the other host.

 ____/ 2 pts.

2. Use the command

 $ssh-keygen -t dsa$
to create a DSA public key for your account on x, and an `.ssh` directory. You will have to enter a passphrase which will be used to encrypt/decrypt your private key. Name the private and public key files `id_dsa` and `id_dsa.pub` respectively. Ensure these two files are in your `.ssh` directory on x.

_____/ 3 pts.

3. Ssh into your account that was created in Step 1 on host y using your regular password. Copy the contents of `id_dsa.pub` file containing your public key into the `authorized_keys2` file in the `.ssh` directory in your home account on host y.

_____/ 2 pts.

4. Test the set up by executing

 `ssh -v a_y`

on host x where a_y is one of the two IP addresses of host y. Authenticate yourself with your passphrase instead of your password. The `-v` option for `verbose` will show each step of the process of creating a secure shell communication channel from your host computer x to y. After the communication channel is established, try starting an X windows client like `xterm`. Based on your observations in this step, how do you think `ssh` with public key authentication actually works?.

_____/ 5 pts.

5. Demonstrate your set up of secure shell with public key authentication to one of the TAs during their office hours. I’d expect all of you to complete your demonstrations by the 23rd of March, 2005. You must also include the results for part 4 in your final lab report.

 Part 4B

The `iptables` software enables one to administer the IP packet filtering facility in the Linux kernel. Working with your group members, write a shell script of `iptables` that enforces the IP network security policy below with input, output, and forwarding packet-filtering rules. Read the man page for `iptables`, the online document

 `/usr/share/doc/ipchains-1.3.10/HOWTO.txt`

and the web document

2
Start your script by flushing the rules of the three firewall chains:

```
iptables -F input
iptables -F output
iptables -F forward
```

After running the script, use the commands

```
iptables -L input
iptables -L output
iptables -L forward
```

to list the packet filtering rules that have been installed in the Linux kernel. Name the script `packet-filter-ex-4`, put in `/etc`, set its group to `instructor`, and make it readable and executable by its group.

IP Network Security Policy

Let H be the set of 12 hosts in the same row as your host and let H' be the other 24 hosts that are in different rows than your host.

(a) Unless otherwise stated by this policy, all incoming, outgoing, and forwarded packets are accepted (in the `iptables` sense).

(b) An incoming TCP `telnet` packet with a source address on a host in H is denied.

(c) An outgoing TCP `telnet` packet with a destination address on a host in H is denied.

(d) A forwarded TCP `ssh` packet with both a source and a destination address on a host in H' is rejected.

(e) An incoming UDP packet with a source address on a host in H' is rejected.
(f) An outgoing UDP packet with a destination address on a host in H' is rejected.

Test your results with `telnet`, `ssh`, and `traceroute` with and without the IP network security policy.

For your final lab report, hand in these two sheets, your results for part 4A (part 4), a copy of your `iptables` shell script, your results for part 4B, and finally a copy of each member’s log book.