If we add \(x_5 = -1 - 2x_3 + x_4 \) to the optimal dictionary of the original LP, we have

\[
\begin{align*}
 x_1 &= 2 + 3x_3 - 2x_4 \\
 x_2 &= 2 - 5x_3 + 3x_4 \\
 x_5 &= -1 - 2x_3 + x_4 \\
\end{align*}
\]

\[2 = 12 - 2x_3 - 7x_4 \]

This dictionary is PRIMAL INFEASIBLE but DUAL FEASIBLE

Construct the dual dictionary which is

\[
\begin{align*}
 s_3 &= 2 - 3s_1 + 5s_2 + 2s_5 \\
 s_4 &= 7 + 2s_1 - 3s_2 - s_5 \\
 -w &= -12 - 2s_1 - 2s_2 + s_5 \\
\end{align*}
\]

and apply the Simplex method to this dictionary

In the next iteration, \(s_5 \) ENTERS the basic while \(s_4 \) LEAVES

Continue until optimality
Changes in the rhs vector \(b \)

Suppose we add \(\delta \) to the first component of \(b \)

We want to know the values of \(\delta \) which will change the optimal basis \(B \) to the previous LP (2)

If the optimal basis changes, we want to know how to reoptimize the new LP using sensitivity analysis.

Our new LP is

\[
\begin{align*}
\text{Max} & \quad 5x_1 + x_2 - 12x_3 \\
\text{s.t.} & \quad 3x_1 + 2x_2 + x_3 = (10 + \delta) \\
& \quad 5x_1 + 3x_2 + x_4 = 16 \\
& \quad x_1, x_2, x_3, x_4 \geq 0
\end{align*}
\]

Note that changing \(b \) changes the value of the basic variables.

Since \(x_B = A_B^{-1} b \)

Since \(x_1 \) and \(x_2 \) were the basic variables in the previous optimal solution, we have
So, we can REOPTIMIZE using the dual Simplex method.

EXERCISE: Choose \(S = 1 \) (which is outside the range) and reoptimize with the dual Simplex method.

ALTERNATE method using primal and dual Simplex models:

(a) Solve the original LP

for \(x^* = \begin{bmatrix} \frac{3}{2} \\ 0 \\ 0 \end{bmatrix} \) and \(y^* = \begin{bmatrix} -10 \\ 7 \\ 0 \end{bmatrix} \)

and an optimal objective value of 12.

(b) Now solve the new LP

\[
A = \begin{bmatrix} 3 & 2 & 10 \\ 5 & 3 & 0 \\ 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 11 \\ 16 \\ 1 \\ 0 \end{bmatrix}, \quad c = \begin{bmatrix} 5 \\ 1 \\ 12 \\ 0 \end{bmatrix}
\]

\(\varepsilon_p = 1 \times 10^{-6} \) and \(B = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \Rightarrow x_0^* = \begin{bmatrix} 7 \\ 0 \\ 0 \end{bmatrix} \)

with Koehk's dual Simplex method.