This examination consists of 5 problems, which are subdivided into 9 questions, where each question counts for the explicitly given number of points, adding to a total of 44 points. Please write your answers in the spaces indicated, or below the questions, using the back of the sheets for completing the answers and for all scratch work, if necessary. You are allowed to consult two 8.5in × 11in sheets with notes, but not your book or your class notes. If you get stuck on a problem, it may be advisable to go to another problem and come back to that one later.

You will have 60 minutes to do this test.

Good luck!
Problem 1 (12 points)

(a, 4pts) True or false:

\[\forall n \in \mathbb{Z}_{\geq 2}, a \in \mathbb{Z}_n: a^2 \equiv 1 \pmod{n} \implies a = 1 \text{ or } a = n - 1. \]

Please explain.

(b, 4pts) Applying Möbius’s inversion formula to \(F(n) = n \), namely, \(f(n) = \sum_{d|n, d \geq 1} \mu(d) \frac{n}{d} \) yields what number theoretic function for \(f \)? Please explain.

(c, 4pts) Please show that \(1105 = 5 \cdot 13 \cdot 17 \) is a Carmichael number.
Problem 2 (6 points): For which integers $n \in \mathbb{Z}_{\geq 0}$ is $2^n - 4$ divisible by 7. Please justify your answer.

Problem 3 (6 points): Please compute residues $x, y \in \mathbb{Z}_{11}$ such that $3x + 4y \equiv 0 \pmod{11}$ and $4x + 3y \equiv 1 \pmod{11}$. Please show all your work.
Problem 4 (8 points): Consider $315 = 5 \cdot 7 \cdot 9$ and let $a \in \mathbb{Z}_{315}$ with

$$
a \equiv 3 \pmod{5},
$$
$$
a \equiv 5 \pmod{7},
$$
$$
a \equiv 7 \pmod{9}.
$$

Please compute $y_0 \in \mathbb{Z}_5$, $y_1 \in \mathbb{Z}_7$ and $y_2 \in \mathbb{Z}_9$ such that

$$
a = y_0 + y_1 \cdot 5 + y_2 \cdot 5 \cdot 7.
$$

Please show all your work. After seeing the answer, could you have determined y_1 and y_2 without any computation?
Problem 5 (12 points): Consider the following instance of the RSA: the public key $K = P \cdot Q$ where P and Q are primes with $P \not\equiv 1 \pmod{5}$, $Q \not\equiv 1 \pmod{5}$; the public (enciphering) exponent is $Y = 5$, i.e., the ciphertext of a message M is $N = E_K(M) = (M^5 \mod K)$. Please prove the following.

(a, 5pts) $\lambda = ((P-1)(Q-1) \mod 5) \neq 0$
and $X = \frac{\mu(P-1)(Q-1)+1}{5}$ is an integer for $\mu = (4\lambda^{-1} \mod 5)$.

(b, 5pts) The integer X as defined in (a) is the private (recovery) exponent, that is for all residues $M \in \mathbb{Z}_K$ with $\text{GCD}(M, K) = 1$ one has $(M^5)^X \equiv M \pmod{K}$.

(c, 2pts) What is X in this case (namely, $Y = 5$) for $P = 3$ and $Q = 5$?