Problem 1

2

3

4

5

Total

Good luck!
Problem 1 (16 points)

(a, 4pts) True or false:

\[
\forall m \in \mathbb{Z}_{\geq 2}, a, b, c \in \mathbb{Z}_m: c \neq 0 \text{ and } ac \equiv bc \pmod{m} \implies a \equiv b \pmod{m}.
\]

Please explain.

(b, 4pts) Please compute all solutions \(x \in \mathbb{Z}_{11}\) for

\[
7 \cdot x^2 \equiv 10 \pmod{11}.
\]

Please show your work.

(c, 4pts) Please compute \(3^{210} \pmod{10}\). [Hint: use Euler’s theorem.]

(d, 4pts) True or false: \(1729 = 7 \cdot 13 \cdot 19\) is a Carmichael number. Please explain.
Problem 2 (6 points): For which integers $n \geq 0$ is $7^{2n+1} - 6^{n+1}$ divisible by 43? Please justify your answer.

Problem 3 (6 points): Please make a table of all positive divisors d of $140 = 2^2 \cdot 5 \cdot 7$ and the corresponding $\phi(d)$ values. Also, please verify Gauss’s theorem: $140 = \sum_{d > 0 \text{ and } d \mid 140} \phi(d)$.
Problem 4 (8 points): Consider $360 = 5 \cdot 8 \cdot 9$ and let $a \in \mathbb{Z}_{360}$ with

\[
\begin{align*}
 a &\equiv 4 \pmod{5}, \\
 a &\equiv 2 \pmod{8}, \\
 a &\equiv 8 \pmod{9}.
\end{align*}
\]

Please compute $y_0 \in \mathbb{Z}_5$, $y_1 \in \mathbb{Z}_8$, and $y_2 \in \mathbb{Z}_9$ such that

\[a = y_0 + y_1 \cdot 5 + y_2 \cdot 5 \cdot 8.\]

Please show all your work.
Problem 5 (8 points): Consider the following instance of the RSA:
the public modulus is \(n = 3 \cdot 11 = 33 \) and the public (enciphering) exponent is \(e = 7 \).

(a, 4pts) Please compute the private deciphering exponent \(j \) such that \((M^e)^j \equiv M \pmod{n}\) (at least for all \(M \in \mathbb{Z}_n \) that are relatively prime to \(n \)).

(b, 4pts) Please encrypt the message \(M_1 = (2 \mod 33) \). Then decrypt the produced cypher number in \(\mathbb{Z}_n \). Also try to encrypt \(M_2 = (3 \mod 33) \) and then decrypt the produced cypher number; note that 3 is not relatively prime to \(n \). Please show all your work.