Finding Small Degree Factors of Multivariate Supersparse (Lacunary) Polynomials Over Algebraic Number Fields

Erich Kaltofen

Massachusetts Institute of Technology

google->kaltofen

Joint work with Pascal Koiran (ENS-Lyon)
Supersparse (lacunary) polynomials

The supersparse polynomial

\[f(X_1, \ldots, X_n) = \sum_{i=1}^{t} c_i X_1^{\alpha_{i,1}} \cdots X_n^{\alpha_{i,n}} \]

is input by a list of its coefficients and corresponding term degree vectors.

\[\text{size}(f) = \sum_{i=1}^{t} \left(\text{dense-size}(c_i) + \lceil \log_2(\alpha_{i,1} \cdots \alpha_{i,n} + 2) \rceil \right) \]

Term degrees can be very high, e.g., \(\geq 2^{500} \)
Supersparse (lacunary) polynomials

The supersparse polynomial

$$f(X_1, \ldots, X_n) = \sum_{i=1}^{t} c_i X_1^{\alpha_{i,1}} \cdots X_n^{\alpha_{i,n}}$$

is input by a list of its coefficients and corresponding term degree vectors.

$$\text{size}(f) = \sum_{i=1}^{t} \left(\text{dense-size}(c_i) + \lceil \log_2(\alpha_{i,1} \cdots \alpha_{i,n} + 2) \rceil \right)$$

Term degrees can be very high, e.g., $\geq 2^{500}$

Over \mathbb{Z}_p: evaluate by repeated squaring
Over \mathbb{Q}: cannot evaluate in polynomial-time except for $X_i = 0, e^{2\pi i / k}$
Easy problems for supersparse polynomials $f = \sum_i c_i X^{\alpha_i} \in K[X]$

Cucker, Koiran, Smale 1998: Compute root $a \in \mathbb{Z}: f(a) = 0$.
Easy problems for supersparse polynomials $f = \sum_i c_i X^{\alpha_i} \in K[X]$

H. W. Lenstra, Jr. 1999:

Input: \(\varphi(\zeta) \in \mathbb{Z}[\zeta] \) monic irred.; let \(K = \mathbb{Q}[\zeta]/(\varphi(\zeta)) \)

a supersparse \(f(X) = \sum_{i=1}^t c_i X^{\alpha_i} \in K[X] \)

a factor degree bound \(d \)

Output: a list of all irreducible factors of \(f \) over \(K \) of degree \(\leq d \)

and their multiplicities (which is \(\leq t \) except for \(X \))

Let \(D = d \cdot \deg(\varphi) \)

There are at most \(O(t^2 \cdot 2^D \cdot D \cdot \log(Dt)) \) factors of degree \(\leq d \)

Bit complexity is \(\left(\text{size}(f) + D + \log \| \varphi \| \right)^O(1) \)

Special case \(\varphi = \zeta - 1, d = D = 1 \): Algorithm finds all rational roots in polynomial-time.
Our result for supersparse polynomials $f = \sum_{i} c_{i} \bar{X}^{\alpha_{i}} \in K[\bar{X}]$
where $\bar{X}^{\alpha_{i}} = X_{1}^{\alpha_{i,1}} \cdots X_{n}^{\alpha_{i,n}}$

Input: $\varphi(\zeta) \in \mathbb{Z}[\zeta]$ monic irred.; let $K = \mathbb{Q}[\zeta]/(\varphi(\zeta))$
a supersparse $f(\bar{X}) = \sum_{i=1}^{t} c_{i} \bar{X}^{\alpha_{i}} \in K[\bar{X}]$
a factor degree bound d

Output: a list of all irreducible factors of f over K of degree $\leq d$
and their multiplicities (which is $\leq t$ except for any X_{j})

Bit complexity is:
$$\left(\text{size}(f) + d + \deg(\varphi) + \log \|\varphi\| \right)^{O(n)}$$ (sparse factors)
$$\left(\text{size}(f) + d + \deg(\varphi) + \log \|\varphi\| \right)^{O(1)}$$ (blackbox factors)

Our ISSAC ’05 result: $K = \mathbb{Q}, n = 2, d = 1$
Linear and quadratic bivariate factors [ISSAC’05]

Input: a supersparse \(f(X, Y) = \sum_{i=1}^{l'} c_i X^{\alpha_i} Y^{\beta_i} \in \mathbb{Z}[X, Y] \)
that is monic in \(X \);
an error probability \(\varepsilon = 1/2^l \)

Output: a list of polynomials \(g_j(X, Y) \)
with \(\deg_X(g_j) \leq 2 \) and \(\deg_Y(g_j) \leq 2 \);
a list of corresponding multiplicities.

The \(g_j \) are with probability \(\geq 1 - \varepsilon \) all irreducible factors of \(f \) over \(\mathbb{Q} \) of degree \(\leq 2 \) together with their true multiplicities.

Bit complexity: \((\text{size}(f) + \log 1/\varepsilon)^{O(1)} \)
Linear and quadratic bivariate factors [ISSAC’05]

Input: a supersparse $f(X,Y) = \sum_{i=1}^{l'} c_i X^{\alpha_i} Y^{\beta_i} \in \mathbb{Z}[X,Y]$ that is monic in X; an error probability $\varepsilon = 1/2^l$

Output: a list of polynomials $g_j(X,Y)$

with $\deg_X(g_j) \leq 2$ and $\deg_Y(g_j) \leq 2$;

a list of corresponding multiplicities.

The g_j are with probability $\geq 1 - \varepsilon$ all irreducible factors of f over \mathbb{Q} of degree ≤ 2 together with their true multiplicities.

Bit complexity: $(\text{size}(f) + \log 1/\varepsilon)^{O(1)}$

With É. Schost + [Tao 2005]: remove monicity restriction factors of degree $O(1)$.
Linear and quadratic bivariate factors [ISSAC’05]

Input: a supersparse \(f(X, Y) = \sum_{i=1}^{l'} c_i X^{\alpha_i} Y^{\beta_i} \in \mathbb{Z}[X, Y] \)
that is monic in \(X \); an error probability \(\varepsilon = 1/2^l \)

Output: a list of polynomials \(g_j(X, Y) \)
with \(\deg_X(g_j) \leq 2 \) and \(\deg_Y(g_j) \leq 2 \);
a list of corresponding multiplicities.

The \(g_j \) are with probability \(\geq 1 - \varepsilon \) all irreducible factors of \(f \) over \(\mathbb{Q} \) of degree \(\leq 2 \) together with their true multiplicities.

Bit complexity: \((\text{size}(f) + \log 1/\varepsilon)^{O(1)} \)

With É. Schost—[Tao 2005]: remove monicity restriction
simple argument: factors of degree \(O(1) \).
Concepts from algebraic number theory

Weil height for algebraic number η:

$$\text{Height}(\eta) = \prod_{\nu \in M_{\mathbb{Q}(\eta)}} \max(1, |\eta|_\nu) \frac{d_\nu}{[\mathbb{Q}(\eta):\mathbb{Q}]}$$

where $M_{\mathbb{Q}(\eta)}$ are all absolute values in $\mathbb{Q}(\eta)$, d_ν their local degrees.
Concepts from algebraic number theory

Weil height for algebraic number η:

$$\text{Height}(\eta) = \prod_{\nu \in M_{\mathbb{Q}(\eta)}} \max(1, |\eta|_{\nu})^{d_{\nu}[\mathbb{Q}(\eta):\mathbb{Q}]}$$

where $M_{\mathbb{Q}(\eta)}$ are all absolute values in $\mathbb{Q}(\eta)$, d_{ν} their local degrees.

Theorem [cf. Amoroso and Zannier 2000]

Let L be a cyclotomic, hence Abelian extension of \mathbb{Q}. For any algebraic $\eta \neq 0$ that is not a root of unity

$$\text{Height}(\eta) \geq \exp\left(\frac{C_1}{D} \left(\frac{\log(2D)}{\log\log(5D)} \right)^{-13}\right) = 1 + o(1),$$

where $C_1 > 0$ and $D = [L(\eta) : L]$.
Concepts from algebraic number theory

Weil height for algebraic number η:

$$\text{Height}(\eta) = \prod_{\nu \in M_{\mathbb{Q}(\eta)}} \max(1, |\eta|_{\nu})^{\frac{d_{\nu}}{[\mathbb{Q}(\eta):\mathbb{Q}]}}$$

where $M_{\mathbb{Q}(\eta)}$ are all absolute values in $\mathbb{Q}(\eta)$, d_{ν} their local degrees.

Theorem [cf. Amoroso and Zannier 2000]
Let L be a cyclotomic, hence Abelian extension of \mathbb{Q}. For any algebraic $\eta \neq 0$ that is not a root of unity

$$\text{Height}(\eta) \geq \exp \left(\frac{C_1}{D} \left(\frac{\log(2D)}{\log\log(5D)} \right)^{-13} \right) = 1 + o(1),$$

where $C_1 > 0$ and $D = [L(\eta) : L]$.

We do not know a C_1 explicitly, hence \exists an algorithm.
Concepts from diophantine geometry

Let $P(X_1, \ldots, X_n) \in \mathbb{C}[X_1, \ldots, X_n]$ be irreducible.
$V(P) = \text{rootset (variety, hypersurface) of } P$
$S \subseteq V(P)$ is Zariski dense iff $S \subseteq V(Q) \implies Q = P$

Example: $\{(\xi, \xi, 0) \mid \xi \in \mathbb{C}\}$ is not dense for $X_1 - X_2 + X_3$.
Concepts from diophantine geometry

Let \(P(X_1, \ldots, X_n) \in \mathbb{C}[X_1, \ldots, X_n] \) be irreducible
\(V(P) = \) rootset (variety, hypersurface) of \(P \)
\(S \subseteq V(P) \) is Zariski dense iff \(S \subseteq V(Q) \implies Q = P \)

Example: \(\{(\xi, \xi, 0) \mid \xi \in \mathbb{C}\} \) is not dense for \(X_1 - X_2 + X_3 \).

Theorem [cf. Laurent 1984]

Let \(P(X_1, \ldots, X_n) \in \mathbb{C}[X_1, \ldots, X_n] \) be irreducible
and let \(S \subseteq V(P) \) where each coordinate of each point is a root of unity (torsion points).

Then
\[
S \text{ is dense for } P \iff P = \prod_{i=1}^{n} X_i^{\beta_i} - \theta,
\]
where \(\theta \) is a root of unity and \(\beta_i \in \mathbb{Z} \).

Example: \(\{(e^{2\pi i/(2j)}, e^{2\pi i/(3j)})\} \) is dense for \(X_1^2 - X_2^3 \).
Gap theorem for factors where cyclotomic points are not dense

Let P be the irreducible factor of f.

Step 1: construct dense set $\{(\theta_1, \ldots, \theta_{n-1}, \eta)\}$ for P such that all θ_i are roots of unity, η are not.
Gap theorem for factors where cyclotomic points are not dense

Let \(P \) be the irreducible factor of \(f \).

Step 1: construct dense set \(\{ (\theta_1, \ldots, \theta_{n-1}, \eta) \} \) for \(P \) such that all \(\theta_i \) are roots of unity, \(\eta \) are not.

Step 2: If \(f(X_1, \ldots, X_n) = g + X_n^u h, \deg_{X_n}(g) < k \), apply Lenstra’s gap argument to

\[
g(\theta_1, \ldots, \theta_{n-1}, \eta) = -\eta^u h(\theta_1, \ldots, \theta_{n-1}, \eta)
\]

and get

\[
u - k \geq \chi \implies g(\theta_1, \ldots, \theta_{n-1}, \eta) = 0
\]

where

\[
\chi = \frac{D}{C_2} \left(\frac{\log(2D)}{\log\log(5D)} \right)^{13} \log(t(t+1)\text{Height}(f)).
\]
Factors for which cyclotomic points are dense

Consider irreducible factor

\[P_{\beta,\gamma,\theta} = P(X_1, \ldots, X_n) = \prod_{i=1}^{n} X_i^{\beta_i} - \theta \prod_{i=1}^{n} X_i^{\gamma_i} \]

with \(\forall i: \beta_i = 0 \lor \gamma_i = 0 \) and \(\gcd_{1 \leq i \leq n}(\beta_i - \gamma_i) = 1 \).

Suppose \((\beta_n, \gamma_n) \neq (0, 0)\). Plugging into \(f = \sum_j c_j X^{\alpha_j} \)

\[X_n = \lambda \left(\prod_{i=1}^{n-1} X_i^{\gamma_i - \beta_i} \right) \frac{1}{\beta_n - \gamma_n} \]

we find \(j \) and \(k = \pm \gcd_{1 \leq i \leq n}(\alpha_{0,i} - \alpha_{j,i}) \):

\[\alpha_{0,n} \neq \alpha_{j,n} \text{ and } \forall i: \gamma_i - \beta_i = (\alpha_{0,i} - \alpha_{j,i})/k, \]
Factors for which cyclotomic points are dense (cont.)

Step 1: compute candidates for (β, γ).

Step 2: compute λ as cyclotomic roots of bounded order of sets of supersparse univariate polynomials in λ.

Step 3: compute the norm of $P(X_1, \ldots, X_n)$, which must be irreducible over the ground field.
Example

$$X^\beta - \theta Y^\gamma | X^n Y^0 - X^0 Y^{n+1} \text{ if }$$

$$k = \pm \text{GCD}(n - 0, 0 - (n + 1)) = \pm 1$$

and

$$-\beta = (n - 0)/k, \quad \gamma = (0 - (n + 1))/k$$

Therefore there is no such factor, even in Stephen Watt’s \textit{symbolic} polynomial sense.

Similar symbolic irreducibility criteria with gap theorem.
Another hard problem for supersparse polynomials in $\mathbb{F}_{2^k}[X]$

Theorem [Kipnis and Shamir CRYPTO ’99]
The set of all supersparse polynomials in $\mathbb{F}_{2^k}[X]$ that have a root in \mathbb{F}_{2^k} is NP-hard for all sufficiently large k.

Corollary (cf. Open Problem in our ISSAC’05 paper)
It is NP-hard to determine if a polynomial in X over \mathbb{F}_{2^k} given by a division-free straight-line program has a root in \mathbb{F}_{2^k}.
Grazie mille!