Software in the Era of Parallelism

David Padua
University of Illinois at Urbana-Champaign
Outline of the talk

I. Introduction
II. Languages
III. Automatic program optimization
 • Compilers
 • Program synthesizers
IV. Conclusions
I. Introduction (1):
The era of parallelism

• The era of parallelism is (finally !) here
• Are we ready for it ?
• After all, we knew for 40 years that it was coming
I. Introduction (2): What we did

• Parallel algorithms.
• Widely used parallel *programming notations*
 – Distributed memory (SPMD/MPI) and
 – Shared memory (pthreads/OpenMP).
• *Compiler and program synthesis algorithms*
 – Automatically map computations and data onto parallel machines/devices.
 – Detection of parallelism.
• Education.

Main focus in the past: numerical computing
I. Introduction (3): Why we did it

• Main goal of software studies: to reduce the additional cost of parallelism. (The same is true of computer architecture)
 – Want efficiency/portable efficiency
I. Introduction (4): But ...

- But much remains to be done and, most likely, widespread parallelism will give us performance at the expense of a dip in productivity.
I. Introduction (5): The future

• Although we learned that advances are not easy (Software only seems easy after the fact), we have now many ideas and significant experience.

• And … Industry interest → more resources to solve the problem.

• The extensive experience of massive deployment will also help.

• The situation is likely to improve rapidly. Exciting times ahead.
Outline of the talk

I. Introduction

II. Languages

III. Automatic program optimization
 • Compilers
 • Program synthesizers

IV. Conclusions
II. Languages (1): OpenMP and MPI

- OpenMP constitutes an important advance, but its most important contribution was to unify the syntax of the 1980s (Cray, Sequent, Alliant, Convex, IBM,…).
- MPI has been extraordinarily effective.
- Both have mainly been used for numerical computing. Both are widely considered as “low level”.
- Alternatives have been designed. Next: an example of higher level language for numerical computing.
II. Languages (2): Hierarchically Tiled Arrays

• Recognizes the importance of blocking/tiling for locality and parallel programming.
• Makes tiles first class objects.
 – Referenced explicitly.
 – Manipulated using array operations such as reductions, gather, etc..

Joint work with IBM Research.
II. Languages (3): Hierarchically Tiled Arrays

- 2 X 2 tiles map to distinct modules of a cluster
- 4 X 4 tiles Use to enhance locality on L1-cache
- 2 X 2 tiles map to registers
II. Languages (4): Accessing HTAs

tiles

$h\{1,1:2\}$

$h\{2,1\}$

hierarchical
II. Languages (5):
Tiled matrix-matrix multiplication

```
for I=1:q:n
    for J=1:q:n
        for K=1:q:n
            for i=I:I+q-1
                for j=J:J+q-1
                    for k=K:K+q-1
                        C(i,j)=C(i,j)+A(i,k)*B(k,j);
                    end
                end
            end
        end
    end
end
```

```
for i=1:m
    for j=1:m
        for k=1:m
            C{i,j}=C{i,j}+A{i,k}*B{k,j};
        end
    end
end
```
II. Languages (6): Parallel matrix-matrix multiplication

```plaintext
function summa (A, B, C)
for k=1:m
    T1 = spread(A{:, k}, dim=1, m);
    T2 = spread(B{k, :}, dim=2, m);
    C = C + matmul(T1{:, :,} ,T2 {:, :,});
end
```

parallel computation

spread

broadcast

spread

T1{:, :,} matmul T2 {:, :,}
void lu(HTA<double,2> A, HTA<int,1> p, int nb) {
 A.part((0,0),(0,0));
 p.part((0), (0));
 while(A(0,0).lsize(1)<A.lsize(1)){
 int b = min(A(1,1).lsize(0), nb);
 A.part((1,1),(b,b));
 p.part((1), (b));
 dgetf2(A(1:2,1), p(1));
 dlaspw(A(1:2,0), p(1));
 dlaspw(A(1:2,2), p(1));
 trsm(HtaRight, HtaUpper, HtaNoTrans, HtaUnit, One, A(1,1),A(1,2));
 gemm(HtaNoTrans, HtaNoTrans, MinusOne, A(2,1), A(1,2), One, A(2,2));
 A.rmPart((1,1));
 p.rmPart((1));
 }
}
II. Languages (7): Advantages of tiling as a first class object

• Array/Tile notation produces code more readable than MPI. It significantly reduces number of lines of code.
II. Languages (8): Advantages of tiling as a first class object
II. Languages (9):
Performance identical to Fortran + MPI
II. Languages (9):
Advantages of making tiles first class objects

• More important advantage: Tiling is explicit. This simplifies/makes more effective automatic optimization.

```plaintext
for i=1:m
    for j=1:m
        for k=1:m
            C{i,j}=C{i,j}+A{i,k}*B{k,j};
        end
    end
end
```
II. Languages (10):
Conclusions: What next?

• High-level notations/new languages should be studied. Much to be gained.
• But .. New languages by themselves will not go far enough in reducing costs of parallelization.
• Automatic optimization is needed.
• Parallel programming languages should be **automatic optimization enablers**.
 – Need language/compiler co-design.
 – Libraries can be considered part of the language
 New languages are **not** needed
 But the compiler must know about the libraries
Outline of the talk

I. Introduction
II. Languages
III. Automatic program optimization
 • Compilers
 • Program synthesizers
IV. Conclusions
III. Automatic Program Optimization (1)

• The objective of compilers from the outset.

“It was our belief that if FORTRAN, during its first months, were to translate any reasonable “scientific” source program into an object program only half as fast as its hand coded counterpart, then acceptance of our system would be in serious danger.”

John Backus
Fortran I, II and III
III. Automatic Program Optimization (2)

• Still far from solving the problem. The Fortran challenge is much more difficult now

• Two approaches:
 – Compilers
 – The emerging new area of program synthesis.
Outline of the talk

I. Introduction
II. Languages
III. Automatic program optimization
 • Compilers
 • Program synthesizers
IV. Conclusions
III.1 Compilers (1)
Purpose

• Bridge the gap between programmer’s world and machine world. Between readable/easy to maintain code and unreadable high-performing code.

• The idiosyncrasies of multicore machines, however interesting in our eyes, are more a problem than a solution.

• In an ideal world, compilers or related tools should hide these idiosyncrasies.

• But, what is the hope of this happening today?
III.1 Compilers (2)
How well do they work?

- Evidence accumulated for many years show that compilers today fail to meet our expectations.
- Problems at all levels:
 - Detection of parallelism (numerical computing)
 - Vectorization
 - Locality enhancement
 - Traditional compilation
- I’ll show only results one example.
III.1 Compilers (4)
How well do they work?

Vectorization

III.1 Compilers (5)
Compiler flaws

- Poor analysis
- Ad hoc optimization strategies
- Uneven implementations
III. 1 Compilers (6)

Obstacles

• Need a new generation of compilers, but

• Several factors conspire against progress in program optimization
 – The myth that the automatic optimization problem is solved or insurmountable.
 – The natural desire to work on fashionable problems and “low hanging fruits”
Outline of the talk

I. Introduction

II. Languages

III. Automatic program optimization
 • Compilers
 • Program synthesizers

IV. Conclusions
III.2 Program Synthesizers (1)

• Emerging new field.
• Goal is to automatically generate highly efficient code for each target machine.
• Typically, a generator is executed to empirically search the space of possible algorithms/implementations.

• Examples:
 – In linear algebra: ATLAS, PhiPAC
 – In signal processing: FFTW, SPIRAL
III.2 Program Synthesizers (3)

• Automatic generation of libraries
 – Reduce development cost
 – For a fixed cost, enable a wider range of implementations and thus make libraries more usable.

• Advantage over compilers: Can make use of semantics
 – More possibilities can be explored.

• Disadvantage over compilers: Domain specific.
III.2 Program Synthesizers (4)
Three synthesis projects

1. **Spiral**
 Joint project with CMU and Drexel.

2. **Analytical models for ATLAS**
 Joint project with Cornell.

3. **Sorting and adaptation to the input**

 In all cases results are surprisingly good. Competitive or better than the best manual results.
Special Issue on:
PROGRAM GENERATION, OPTIMIZATION, AND PLATFORM ADAPTATION

Papers on:
- Design & Implementation of FFTW3
- SPIRAL: Code Generation for DSP Transforms
- Synthesis of Parallel Programs for Ab Initio Quantum Chemistry Models
- Self-Adapting Linear Algebra Algorithms & Software
- Parallel VSIPPL+: An Open Standard for Parallel Signal Processing
- Parallel MATLAB: Doing it Right
- Broadway: Exploiting the Domain-Specific Semantics of Software Libraries
- Is Search Really Necessary to Generate High-Performance BLAS?
- Telescoping Languages: Automatic Generation of Domain Languages
- Efficient Utilization of SIMD Extensions
- Intelligent Monitoring for Adaptation in Grid Applications
- Design & Engineering of a Dynamic Binary Optimizer
- A Survey of Adaptive Optimization in Virtual Machines

plus...
Scanning Our Past: Electrical Engineering Hall of Fame: Alexander Graham Bell
III.2 Program Synthesizers (5)
Sorting routine synthesis

- During training several features are selected influenced by:
 - Architectural features
 - Different from platform to platform
 - Input characteristics
 - Only known at runtime
 - Features such as: Radix for sorting, how to sort small segments, when is a segment small.

X. Li, M. Garzarán, and D. Padua. Optimizing Sorting with Genetic Algorithms. CGO2005
Intel Xeon

- Keys per Cycle vs. Standard Deviation
- Graphs show performance trends for Quicksort, CC-Radix, and Merge Sort.

AMD Athlon MP

- Keys per Cycle vs. Standard Deviation
- Graphs show performance trends for Quicksort, CC-Radix, and Merge Sort.

Legend:
- Blue: Quicksort
- Red: CC-Radix
- Black: Merge Sort
III.2 Program Synthesizers (6)
Sorting routine synthesis
Performance on Power4
III.2 Program Synthesizers (8)

Programming synthesizers

• Objective is to develop language extensions to implement parameterized programs.

• Values of the parameters are a function of the target machine and execution environment.

• Program synthesizers could be implemented using autotuning extensions.

III.2 Program Synthesizers (9)
Programming synthesizers
Example extensions.

#pragma search (1<=m<=10, a)
#pragma unroll m
for(i=1;i<n;i++) { ... }
%
if (a) then {algorithm 1}
else {algorithm 2}
IV. Conclusions

• Advances in languages and automatic optimization will probably be slow. Difficult problem.
• Advent of parallelism → Decrease in productivity. Higher costs.
• But progress must and will be made.
• Automatic optimization (including parallelization) is a difficult problem. At the same time is a core of computer science:

 How much can we automate?