Introduction to Reliability

☆ What is reliability?
☆ Reliability is an index that estimates dependability (consistency) of scores

☆ Why is it important?
☆ Prerequisite to validity because if you are not measuring something accurately and consistently, you do not know if your inferences are valid
☆ Should not base decisions on test scores that are not reliable

2 sources of measurement error

1) Random - individual fluctuation
 not too serious
 [use of large samples corrects for this]

2) Systematic - due to test itself
 big problem
 makes test unreliable
Reasons to be concerned with reliability

- Provides a measure of the extent to which an examinee’s score reflects random measurement error.
 - Measurement errors can be caused by examinee-specific factors.
 - motivation
 - concentration
 - fatigue
 - boredom
 - momentary lapses of memory
 - carelessness in marking answers
 - luck in guessing
 - Measurement errors can be caused by test-specific factors.
 - ambiguous or tricky items
 - poor directions
 - Measurement errors can be caused by scoring-specific factors.
 - nonuniform scoring guidelines
 - carelessness
 - counting or computational errors.

Reliability

The extent to which the assessment instrument yields consistent results for each student

- How much are students’ scores affected by temporary conditions unrelated to the characteristic being measured (test-retest reliability)?
- Do different parts of a single assessment instrument lead to similar conclusions about a student’s achievement (internal consistency reliability)?
- Do different people score students’ performance similarly (inter-rater reliability)?
- Are instruments equivalent (alternate/equivalent/parallel forms reliability)?
Internal consistency reliability

- Involve only one test administration
- Used to assess the consistency of results across items within a test (consistency of an individual’s performance from item to item & item homogeneity)
- To determine the degree to which all items measure a common characteristic of the person
- Ways of assessing internal consistency:
 - Kuder-Richardson (KR20)/Coefficient alpha
 - Split-half reliability

Alternate-forms reliability

- Used to assess the consistency of the results of two tests constructed in the same way from the same content domain
- To determine whether scores will generalize across different sets of items or tasks
- The two forms of the test are correlated to yield a coefficient of equivalence
Test-retest reliability

- Used to assess the consistency of a measure from one time to another
- To determine if the score generalizes across time
- The same test form is given twice and the scores are correlated to yield a coefficient of stability
- High test-retest reliability tells us that if examinees would probably get similar scores if tested at different times
- Interval between test administrations is important—practice effects/learning effects

Internal Consistency Reliability for Objectively Scored Tests

- KR20 (Coefficient Alpha)
- KR21
Internal Consistency
Cronbach’s Alpha

• 1951 article: Estimates how consistently learners respond to the items within a scale
• Alpha measures the extent to which item responses obtained at the same time correlate highly with each other
• The widely-accepted social science cut-off is that alpha should be .70 or higher for a set of items to be considered a scale
• Rule: more items, the more reliable a scale will be (alpha increases)

KR20

* Dichotomously scored items with a range of difficulty:
 * Multiple choice
 * Short answer
 * Fill in the blank

* Formula:

\[
KR20 = \left[\frac{n}{(n - 1)} \right] \times \left[1 - \frac{\sum pq}{\text{Var}} \right]
\]

- **KR20** = estimated reliability of the full-length test
- **n** = number of items
- **Var** = variance of the whole test (standard deviation squared)
- **\(\sum pq \)** = sum the product of pq for all n items
- **p** = proportion of people passing the item
- **q** = proportion of people failing the item (or 1-p)
Coefficient Alpha

Items that have more than dichotomous, right-wrong scores:
- Likert scale (e.g. rate 1 to 5)
- Short answer
- Partial credit

Formula:

$$\text{Alpha} = \frac{n}{n - 1} \times \left(\frac{\text{Var}_t - \sum \text{Var}_i}{\text{Var}_t} \right)$$

Alpha = estimated reliability of the full-length test
n = number of items
Var_t = variance of the whole test (standard deviation squared)
$\sum \text{Var}_i$ = sum the variance for all n items

KR21

Used for dichotomously scored items that are all about the same difficulty

Formula:

$$\text{KR21} = \frac{n}{n - 1} \times \left(1 - \frac{M \times (n - M)}{n \times \text{Var}} \right)$$

KR21 = estimated reliability of the full-length test
n = number of items
Var = variance of the whole test (standard deviation squared)
M = mean score on the test
Limitations of KR20 and KR21

1. Single moment in time
2. Generalization across domains
3. Speededness

Reliability for Subjectively Scored Tests

- Training and scoring
- Intra-rater reliability
- Inter-rater reliability
Intra-rater Reliability

- Used to assess each raters’ consistency over time
- Agreement between scores on the same examinee at different times

Inter-rater Reliability

- Used to assess the degree to which different raters/observers give consistent estimates of the same phenomenon
- Agreement between the scores assigned by two raters (calculated as a percentage of agreement between the two or a correlation between the two)
 - Exact agreement for 5 points or less
 - Adjacent agreement for more than 5 points
Strategies to enhance reliability

- **Objectively Scored Tests**
 - Write “better” items
 - Lengthen test
 - Manage item difficulty
 - Manage item discrimination

- **Subjectively Scored Tests**
 - Training of scorers
 - Reasonable rating scale

Write better items

- Item writing checklist
 - General item writing
 - Stem construction
 - Response option development
Lengthen test

Spearman-Brown Formula

\[r_{kk} = \frac{k r_{11}}{1 + (k - 1) r_{11}} \]

- \(r_{kk} \) = reliability of the test \(k \) times as long as the original test
- \(r_{11} \) = reliability of original test
- \(k \) = factor by which the length of the test is changed

Example using Spearman-Brown Formula:

A test is made up of 10 items and has a reliability of .67. Will reliability improve if the number of items is doubled, assuming new items are just like the existing ones?

\[k = \frac{20}{10} = 2 \]
\[r_{kk} = \frac{2(0.67)}{1 + (2 - 1)0.67} = \frac{1.34}{1.67} = 0.80 \]
Lengthen test

✿ Considerations:
 ✿ Time available for testing
 ✿ Fatigue of examinees
 ✿ Ability to construct good test items
 ✿ Point of diminishing returns - increasing test length by a lot will increase reliability but not enough to make it worth the testing time needed

Item difficulty

✿ Proportion of examinees who answered the item correctly:
 Item difficulty = \(\frac{\text{# of people who answered correctly}}{\text{# of total people taking the test}} \)

✿ Goal of .60 - .80
Item difficulty

* Item is probably too easy:

<table>
<thead>
<tr>
<th>Choices</th>
<th>#Selecting</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>4</td>
</tr>
<tr>
<td>B.*</td>
<td>90</td>
</tr>
<tr>
<td>C.</td>
<td>4</td>
</tr>
<tr>
<td>D.</td>
<td>2</td>
</tr>
</tbody>
</table>

Difficulty = 90/100 = .90

Item difficulty

* Item is probably too difficult:

<table>
<thead>
<tr>
<th>Choices</th>
<th>#Selecting</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>16</td>
</tr>
<tr>
<td>B.</td>
<td>48</td>
</tr>
<tr>
<td>C.*</td>
<td>26</td>
</tr>
<tr>
<td>D.</td>
<td>10</td>
</tr>
</tbody>
</table>

Difficulty = 26/100 = .26
Item difficulty

* Item is reasonably difficult:

<table>
<thead>
<tr>
<th>Choices</th>
<th>#Selecting</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.*</td>
<td>76</td>
</tr>
<tr>
<td>B.</td>
<td>7</td>
</tr>
<tr>
<td>C.</td>
<td>3</td>
</tr>
<tr>
<td>D.</td>
<td>14</td>
</tr>
</tbody>
</table>

Difficulty = 76/100 = .76

Assessment of Observation (Measurement)

Observed Score = True Score + Error
Standard Error of Measurement

- Amount of variation to be expected in test scores
- SEM numbers given in tests are typically based upon 1 standard error
- Example—Score is 52 SEM is 2.5
 68% of scores between 49.5 and 54.5 based upon repeated testing