Modeling Metacognitive Monitoring in Narrative-Centered Learning Environments

James C. Lester
North Carolina State University
lester@ncsu.edu

Scott W. McQuiggan
SAS Institute, Inc. and North Carolina State University
scott.mcquiggan@sas.com

John L. Nietfeld
North Carolina State University
john_nietfeld@ncsu.edu

Kristin L. Hoffmann
North Carolina State University
klhoffma@ncsu.edu

Jennifer L. Robison
North Carolina State University
jlrobiso@ncsu.edu

Hiller A. Spires
North Carolina State University
hiller_spires@ncsu.edu

1. Introduction

Narrative is the subject of increasing interest within the intelligent tutoring systems community. Recently, researchers have begun to develop narrative-centered learning environments (NLEs) that combine story contexts and pedagogical support strategies to deliver effective, engaging educational experiences. Contextualizing learning within a narrative affords the use of artificial intelligence techniques that tailor narrative and education content to students’ actions, affective
states, and abilities. Drawing on an interdisciplinary body of work, including intelligent tutoring systems, embodied conversational agents, and serious games, these environments offer the promise of adaptive, motivating learning experiences to students. NLEs are currently under investigation in a range of domains, including military soft-skills training (Johnson, 2007; Riedl and Stern, 2006), anti-bullying education (Aylett et al., 2005), health intervention education (Marsella et al., 2003), and science learning in microbiology and genetics (Mott and Lester, 2006).

By incorporating learning into narrative-based, virtual environments, investigators hope to tap into students’ innate facilities for crafting and understanding stories. Contextualizing learning experiences are known to encourage regulated learning and behavior (Perry, 1998). Narrative is also well suited to alternative learning paradigms such as guided discovery and inquiry-based learning. Leveraging stories’ ability to draw audiences into plots and settings, NLEs can introduce novel perceptual, emotional, and motivational experiences, as well as establish connections between narrative content and pedagogical subject matter in young learners (Schraw, 1997). Further, NLEs can effectively support the factors shown to contribute to student levels of motivation (Malone and Lepper, 1987). Such contextual experiences influence student learning and motivation (Linnenbrink and Pintrich, 2001) by providing an environment whereby students are self-directed in their goal-based behaviors and yet orientation toward the goals themselves can be guided by the organization and structure of the learning environment (Schunk et al., 2008). NLEs allow students a degree of autonomy and control within a structured context that is particularly fertile for the development of self-regulation.

Understanding how learners develop and improve skills of self-regulation in computer-based environments is becoming increasingly important. Self-regulated learning (SRL) refers to learning that results from students’ self-generated thoughts and behaviors that are systematically oriented toward the attainment of their learning goals (Schunk and Zimmerman, 2003). Research in SRL has made significant advancements as models have been developed and refined (Butler and Winnie, 1995; Greene and Azevedo, 2007; Pintrich, 2000; Winnie and Hadwin, 1998; Zimmerman, 2000). However, there is now a shift in efforts to understand self-regulation not only in traditional learning environments but also in computer-based environments capable of providing intelligent tutoring
(Azevedo, 2005; Graesser et al, 2005; Roll et al, 2007). This poses significant challenges for research designs because such environments are very complex and may require additional processing demands from the user (Lajoie and Azevedo, 2006; Schraw, 2007). In order to provide sophisticated models of the development of SRL in computer-based environments (i.e., NLEs) and subsequently build intelligent tutoring systems that support the development of SRL, we must delve into the models and start to examine the relationships between key variables within the models. Models of SRL, at the broadest levels, are composed of strategic, metacognitive, and motivational components (Zimmerman, 2000). In this work we begin to examine the function of variables within these components by considering students working within a rich NLE.

Self-regulated learners continuously monitor cognition, motivation, and behavior guided by goals and the constraints of the environment (Pintrich, 2000). Metacognitive monitoring skills and the regulation of strategies and tactics are core components within information processing models of self-regulation (Butler and Winnie, 1995) and the development of human expertise in general (Glaser and Chi, 1988). More accurate monitoring has been shown to lead to improved self-regulation that, in turn, translates into improved performance (Thiede, et al., 2003). Thus, intelligent tutoring systems would be able to further tailor instruction if they were able to effectively and accurately diagnosis student monitoring. Traditionally this is accomplished through student reports of monitoring judgments. However, this paper reports on the results of two studies that investigate an inductive approach to modeling metacognitive monitoring in a narrative-centered learning environment, Crystal Island. The results of these experiments are encouraging and suggest that it may be possible to devise accurate computational models of student monitoring that can operate efficiently at runtime to diagnose student monitoring without the use of interruptive self-reports.

2. Background

We have yet to see the emergence of a model of self-regulated learning that is universally accepted. However, many agree that self-regulated learning consists of phases including forethought,
monitoring and control, and reflection\(^1\) (Pintrich, 2000; Winnie and Hadwin, 1998; Zimmerman, 2000b). Figure 1 depicts a high-level overview of the cognitive components of self-regulated learning. Forethought refers to processes that precede acting and often include planning, setting goals and expectations of outcomes, organizing knowledge, adopting goal orientations, and judging efficacy and interest (Pintrich, 2000; Zimmerman, 2000b). Monitoring and control refer to processes occurring during task effort and may include monitoring motivation and affect, monitoring cognition and effort, strategy selection, and focusing of attention (Pintrich, 2000; Zimmerman, 2000b). Lastly, self-reflection refers to processes occurring post effort and after task completion. Self-reflection may include attribution of outcomes, evaluation of self, and evaluation of task (Pintrich, 2000; Zimmerman, 2000b).

\(^1\) These phases are included at varying degrees of granularity and under varying terminology.
Understanding how learners develop and improve skills of self-regulation in computer-based environments is becoming increasingly important. Self-regulated learning (SRL) refers to learning that results from students’ self-generated thoughts and behaviors that are systematically oriented toward the attainment of their learning goals (Schunk and Zimmerman, 2003). Research in SRL has made significant advancements as models have been developed and refined (Butler and Winne, 1995; Greene and Azevedo, 2007; Pintrich, 2000; Winne and Hadwin, 1998; Zimmerman, 2000b). However, there is now a shift in efforts to understand self-regulation not only in traditional learning environments but also in computer-based environments capable of providing intelligent tutoring (Azevedo, 2005; Graesser, McNamara, and VanLehn, 2005; Roll et al., 2007). This poses significant challenges because such environments are very complex and may require additional processing demands from the user (Lajoie and Azevedo, 2006; Schraw, 2007). In order to provide sophisticated models of the development of SRL in computer-based environments (i.e., narrative-centered learning environments) and subsequently build intelligent tutoring systems that support the

Figure 1. Self-regulated learning model modified from Winne and Hadwin, 1998; Pintrich, 2000; Zimmerman, 2000b.
development of SRL we must delve into the models and start to examine the relationships between the key variables within the models. Models of SRL, at the broadest levels, are composed of strategic, metacognitive, and motivational components (Zimmerman, 2000b). In this work we begin to examine the function of variables within these components by students working within a rich NLE.

In this paper we focus our attention on the process of monitoring (Figure 2) and their associated metacognitive judgments. Monitoring is a crucial component of self-regulated learning. Self-regulated learners continuously monitor cognition, motivation, and behavior guided by goals and the constraints of the environment (Pintrich, 2000). Metacognitive monitoring skills and the regulation of strategies and tactics are core components within information processing models of self-regulation (Butler and Winne, 1995) and the development of human expertise in general (Glaser and Chi, 1988). More accurate monitoring has been shown to lead to improved self-regulation that, in turn, translates into improved performance (Thiede et al., 2003). Thus, intelligent tutoring

![Figure 2. Monitoring, modified from Winne and Hadwin, 1995.](image-url)
systems would be able to further tailor instruction if they were able to effectively and accurately diagnosis student monitoring.

3. The CRYSTAL ISLAND Learning Environment

Crystal Island is a narrative-centered learning environment built on Valve Software’s Source™ engine, the 3D game platform for Half-Life 2. Crystal Island features a science mystery set on a recently discovered volcanic island. The curriculum underlying Crystal Island’s science mystery is derived from the North Carolina state standard course of study for eighth-grade microbiology. Students play the role of the protagonist, Alyx, who is attempting to discover the identity and source of an unidentified infectious disease plaguing a newly established research station. The story opens by introducing the student to the island and members of the research team for which the protagonist’s father serves as the lead scientist. Several of the team’s members have fallen gravely ill, including Alyx’s father. Tensions have run high on the island, and one of the team members suddenly accuses another of having poisoned the other researchers. It is the student’s task to discover the outbreak’s cause and source, and either exonerate or incriminate the accused team member.

Crystal Island’s setting includes a beach area with docks, a large outdoor field laboratory, underground caves, and a research camp. Throughout the mystery, the student is free to explore the world and interact with other characters while forming questions, generating hypotheses, collecting data, and testing hypotheses. The student can pick up and manipulate objects, take notes, view posters, operate lab equipment, and talk with non-player characters to gather clues about the source of the disease. During the course of solving the mystery, the student is minimally guided through a five problem curriculum. The first two problems focus on pathogens, including viruses, bacteria, fungi, and parasites. The student gathers information by interacting with in-game pathogen “experts” and viewing books and posters in the environment. In the third problem, the student is asked to compare and contrast her knowledge of four types of pathogens. In the fourth problem, the student is guided through an inquiry-based hypothesis-test-and-retest problem. In this stage, she must complete a “fact sheet” with information pertaining to the disease afflicting members of the Crystal Island research team. Once the “fact sheet” is completed and verified by
the camp nurse, the student completes the final problem concerning the treatment of viruses, bacteria, fungi, and parasites, and selects the appropriate treatment plan for sickened Crystal Island researchers. The story and curriculum are interwoven throughout the interactive experience.

4. Modeling Metacognitive Monitoring Study

By incorporating learning into narrative-based, virtual environments, investigators hope to tap into students’ innate facilities for crafting and understanding stories. Contextualized learning experiences are known to encourage regulated learning behavior (Perry, 1998). Narrative is also well suited to alternative learning paradigms such as guided discovery and inquiry-based learning. Leveraging stories’ ability to draw audiences into plots and settings, narrative-centered learning environments can introduce novel perceptual, emotional, and motivational experiences, as well as establish connections between narrative content and pedagogical subject matter in young learners (Schraw, 1997). Further, narrative-centered learning environments can effectively support the factors shown to contribute to student levels of motivation (Malone and Lepper, 1987). Such contextual experiences influence student learning and motivation (Linnenbrink and Pintrich, 2001) by providing an environment whereby students are self-directed in their goal-based behaviors and yet orientation toward the goals themselves can be guided by the organization and structure of the learning environment (Schunk et al., 2007). Narrative-centered learning environments allow students a degree of autonomy and control within a structured context that is particularly fertile for the development of self-regulation. Understanding how learners develop and improve skills of self-regulation in computer-based environments is becoming increasingly important. This study takes a pivotal first step to investigate the prospect of using the CARE framework for modeling metacognitive monitoring; a critical component of self-regulated learning.
4.1 Method

Participants and Design

The participants included 59 eighth grade students from a highly diverse (e.g., 46% minority; 32% free/reduced lunch) magnet school in Raleigh, North Carolina. Thirty-two were boys and 27 were girls. The students ranged in age from 13 to 15 ($M = 13.73, SD = 0.59$). Approximately 56% of the student participants were Caucasian ($n = 33$), 39% were African-American ($n = 23$), and 5% were Hispanic or Latino ($n = 3$). The students participated as part of their science class.

Materials and Apparatus

Materials consisted of the following computer-based instruments:

- **AGQ (Achievement Goals Questionnaire):** This is a 12-item scale that measures achievement goal orientation in the form of four factors: mastery approach, mastery avoidance, performance approach, and performance avoidance (Elliot and McGregor, 2001). The four factors have been shown to have strong reliability and validity through a validation study (Finney et al., 2004). The AGQ was given both as a pretest and posttest.

- **Goals Inventory** (Roedel et al., 1994). This 17-item inventory measures one's tendency to adopt mastery and performance goals and is based upon Dweck and Leggett's (1988) seminal paper on this subject. The items were answered on a five-point Likert scale. Scores for the mastery goals variable could range from 12 to 60 and scores for the performance goals variable could range from five to 25. The Goals Inventory was given both as a pretest and posttest.

- **Gaming Survey.** The Gaming Survey was created for this study and asked questions about experience with video games and computer use. For this study we were particularly interested in two 5-point Likert scale items that included, “Do you play videogames,” that measured the frequency of game play and, “How skilled are you when playing video games,” that measured perceived skill in video game play. The Gaming Survey was given only as a pretest.

- **Situational Interest rating.** At the end of CRYSTAL ISLAND interaction participants were asked
to rate their interest in the game (“Did you enjoy this game?”) on a 10 point Likert scale with one being “Not at all true of me” and 10 being “Very true of me.” Participants rated their interest a second time following feedback from the Scoreboard.

Procedure

Before playing, all students were given background information on CRYSTAL ISLAND in addition to a sheet listing the characters of CRYSTAL ISLAND and a map of the island. The character handout includes images of the characters, their names, and their narrative roles (i.e., virus expert, or camp nurse). The map identifies the layout of the virtual environment and the spatial relationship between areas of interest, such as the dining hall, the research lab, and the infirmary. Students completed pretests and then played CRYSTAL ISLAND for 35 minutes. At an interval of 90 seconds during interaction with CRYSTAL ISLAND, participants were asked, “How well are you accomplishing your overall goal for the game?” They responded by entering a number from zero to 100 where zero corresponded to “not confident at all” and 100 corresponded to “very confident.” These monitoring judgments were collected through an in-game dialog box and recorded in the same log tracking student behavior in the CRYSTAL ISLAND environment. Following game play the participants completed the AGQ and Goals Inventory.

4.2 Results

Nietfeld et al. (2008) examined what variables impacted performance in CRYSTAL ISLAND. Specifically, they investigated the relationship between several SRL variables of interest (goal orientation, monitoring, and situational interest) and CRYSTAL ISLAND outcome measures (number of actions completed, number of goals completed, number of mystery solution guesses, and score). Monitoring was clearly the most prominent SRL variable, it showed significant correlations with actions completed ($r = .33$), goals completed ($r = .59$), and score ($r = .74$). Monitoring also showed a significant negative correlation ($r = -.45$) with number of guesses indicating that students who were confident that they were attaining their goals tended to see less of a need to risk making a guess without having all of the necessary information. This decision appears to be a metacognitively accurate one in that the payoff was the tendency for higher game scores in the end. Neither the
mastery or performance facets from the Goals Inventory nor the mastery approach or performance
approach variables from the AGC showed significant relationships with the CRYSTAL ISLAND outcome
variables. A similar lack of relationships held for the situational interest variable. The mastery avoid
facet of the AGC did show negative relationships with goals completed \((r = -0.26)\) and score \((r = -0.39)\).
In sum, these findings reveal the importance and centrality of monitoring with performance.

To accurately model metacognitive monitoring judgments we utilize procedures which have been
used to model self-efficacy (McQuiggan and Lester, 2006; McQuiggan, Mott, and Lester, 2008) and
affect (Lee et al., 2007; McQuiggan, Lee, and Lester, 2007) using the WEKA machine learning toolkit
(Witten and Frank, 2005). Both a naïve Bayes classifier and decision tree model were learned.
Naïve Bayes and decision tree classifiers are effective machine learning techniques for generating
preliminary predictive models. Naïve Bayes classification approaches produce probability tables
that can be incorporated into runtime systems and used to continually update probabilities for
assessing student self-efficacy levels. Decision trees provide interpretable rules that support
runtime decision making. Runtime systems with decision trees monitor the condition of the
attributes in the rules to determine when conditions are met for assigning particular values of
student self-efficacy. Both the naïve Bayes and decision tree machine learning classification
techniques are useful for preliminary predictive model induction for large multidimensional data.
Because it is unclear precisely which runtime variables are likely to be the most predictive, naïve
Bayes and decision tree modeling provide useful analyses that can inform more expressive machine
learning techniques (e.g., Bayesian networks) that also leverage domain experts’ knowledge.

A tenfold cross-validation analysis was utilized to obtain an estimate of model error. In this method
the data is broken into ten equal partitions. In each of the ten iterations (folds), nine partitions are
used to construct the model and one partition is held out for testing. Each fold uses a unique
partition for testing. Tenfold cross-validation is widely used for obtaining a sufficient estimate of
error (Witten and Frank, 2005).

Data consisted of traces of student behavior in the CRYSTAL ISLAND learning environment, including all
actions, visited locations, goals accomplished, and character interactions. Values (0-100) of student
monitoring judgments served as class labels.
The results (Table 1) indicate that the decision tree model is able to accurately predict student metacognitive monitoring judgment values with 93% accuracy. The decision tree model result is statistically significant from the performance of the naïve Bayes model ($\chi^2(1, N = 2752) = 1740.2, p < 0.0001$) and a baseline model ($\chi^2(1, N = 2752) = 1486.2, p < 0.0001$). Here, we define a baseline model which constantly predicts the most frequently occurring monitoring judgment value (e.g., 100). Surprisingly, the baseline model significantly outperforms the naïve Bayes model ($\chi^2(1, N = 2752) = 20.4, p < 0.01$).

<table>
<thead>
<tr>
<th>Model</th>
<th>Correctly Classified Instances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>20.76%</td>
</tr>
<tr>
<td>Naïve Bayes</td>
<td>14.16%</td>
</tr>
<tr>
<td>Decision Tree</td>
<td>93.36%</td>
</tr>
</tbody>
</table>

Table 1. Modeling metacognitive monitoring results.

4.3 Discussion

This study represents a first step in examining SRL variables in a rich and interactive NLE. A major implication of this study is the centrality that monitoring judgments have within SRL (Butler and Winne, 1995). Future work should follow up not only on the monitoring judgments themselves in narrative-centered learning environments but also the level of calibration accuracy of such judgments, which have been shown in other contexts to be significant predictors of performance (Nietfeld et al., 2006).

Further, we find that through observation of student behavior in the CRYSTAL ISLAND learning environment that we can sufficiently predict student monitoring values, utilizing a constructed decision tree model, at runtime. Future work should also examine whether similar approaches can be used to model levels of calibration accuracy in addition to other SRL variables. By combining models of student metacognitive monitoring with other models, such as self-efficacy (McQuiggan and Lester, 2006; McQuiggan, Mott, and Lester, 2008), we may come to better understand student
self-regulation in real-time affording adaptive pedagogical strategies tailored to individual students. Knowledge of how, when, and where students self-regulate via metacognitive and motivational monitoring judgments within a NLE may in turn aid teachers in developing instructional approaches that support self-regulated learning in both traditional and technology-oriented classrooms. If we are able to extend models of student metacognitive monitoring to understand student levels of calibration, we believe we would be able to further tailor pedagogical interventions for students who are over-confident and increase efficacy of under-confident students. In fact, pedagogical feedback on problem-solving performance has the greatest impact when students are confident but the solution is wrong (Hattie and Timperley, 2007). On the other hand, similar feedback would be less useful for students with low confidence. Instead, when students are in low-confident situations, pedagogical strategies should include instruction and information (Hattie and Timperley, 2007). Thus, the utility in modeling self-regulatory components, such as metacognitive monitoring, is the ability to better construct the content of pedagogical feedback.

4.4 Study Limitations

With regard to limitations, the experiment was designed to control for time on task, allowing 35 minutes for the intervention. As a result of this constraint and the amount of content in CRYSTAL ISLAND, not all participants had finished solving the CRYSTAL ISLAND mystery at the end of the 35 minute session. An alternative design, which will be adopted in future work, will control for task completion rather than time on task.

5. Modeling Metacognitive Monitoring: Replication

The study described above was replicated with a new population of eighth-grade students at a different middle school in North Carolina. One notable difference is that a different version of Crystal Island was used, version 2.0. Recall from chapter 5 that Crystal Island 2.0 included a completely revised curriculum (developed with a cross-disciplinary team and checked against standards by two eighth-grade science teachers) and story. The result is a longer learning experience exposing the student to a variety of problem-solving activities including a hypothesis-testing problem where the student must rely on the scientific method to complete the problem.
The analyzes reported below aim to understand if the results found in the study described in the earlier section could be replicated in the new version of Crystal Island.

5.1 Method

Participants and Design

The participants of the follow up study included 66 eighth grade students from a middle school in Burnsville, North Carolina. Forty-seven were girls and 19 were girls. The students ranged in age from 12 to 15 ($M = 13.42, SD = 0.63$). The students participated as part of their science class.

Materials and Apparatus

The Pre-experiment questionnaires collected data on participant demographics.

Materials consisted of the following computer-based instruments:

- **AGQ (Achievement Goals Questionnaire):** This is a 12-item scale that measures achievement goal orientation in the form of four factors: mastery approach, mastery avoidance, performance approach, and performance avoidance (Elliot and McGregor, 2001). The four factors have been shown to have strong reliability and validity through a validation study (Finney et al., 2004). The AGQ was given both as a pretest and posttest.

- **Goals Inventory** (Roedel et al., 1994). This 17-item inventory measures one's tendency to adopt mastery and performance goals and is based upon Dweck and Leggett's (1988) seminal paper on this subject. The items were answered on a five-point Likert scale. Scores for the mastery goals variable could range from 12 to 60 and scores for the performance goals variable could range from five to 25. The Goals Inventory was given both as a pretest and posttest.

- **Gaming Survey.** The Gaming Survey was created for this study and asked questions about experience with video games and computer use. For this study we were particularly interested in two 5-point Likert scale items that included, “Do you play videogames,” that measured the frequency of game play and, “How skilled are you when playing video games,” that measured perceived skill in video game play. The Gaming Survey was given only as a
pretest.

- **Situation Interest rating.** At the end of CRYSTAL ISLAND interaction participants were asked to rate their interest in the game (“Did you enjoy this game”) on a 10 point Likert scale with one being “Not at all true of me” and 10 being “Very true of me.” Participants rated their interest a second time following feedback from the Scoreboard.

Procedure

Participants entered the experiment room with completed informed consent documentation. Before playing, all students were given background information on CRYSTAL ISLAND in addition to a sheet listing the characters of CRYSTAL ISLAND and a map of the island. The character handout includes images of the characters, their names, and their narrative roles (i.e., virus expert, or camp nurse). The map identifies the layout of the virtual environment and the spatial relationship between areas of interest, such as the dining hall, the research lab, and the infirmary. Students completed pretests and then played CRYSTAL ISLAND for 35 minutes. At an interval of 90 seconds during interaction with CRYSTAL ISLAND, participants were asked, “How well are you accomplishing your overall goal for the game?” They responded by entering a number from zero to 100 where zero corresponded to “not confident at all” and 100 corresponded to “very confident.” These monitoring judgments were collected through an in-game dialog box and recorded in the same log tracking student behavior in the CRYSTAL ISLAND environment. Following game play the participants completed the AGQ and Goals Inventory.

5.2 Results

The results (Table 2) indicate that the decision tree model is able to accurately predict student metacognitive monitoring judgment values with 95% accuracy. The decision tree model result is statistically significant from the performance of the naïve Bayes model ($\chi^2(1, N = 3715) = 2379.2, p < 0.0001$) and a baseline model ($\chi^2(1, N = 3715) = 2717.3, p < 0.0001$). Here, we define a baseline model which constantly predicts the most frequently occurring monitoring judgment value (e.g., 100). The baseline model was significantly outperformed by the naïve Bayes model ($\chi^2(1, N = 3715) = 26.6, p < 0.01$).
Table 2. Modeling metacognitive monitoring results – replication study.

<table>
<thead>
<tr>
<th>Model</th>
<th>Correctly Classified Instances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>12.31%</td>
</tr>
<tr>
<td>Naïve Bayes</td>
<td>14.15%</td>
</tr>
<tr>
<td>Decision Tree</td>
<td>95.55%</td>
</tr>
</tbody>
</table>

Figure 3. Distribution of monitoring values for studies 1 and 2.

5.3 Discussion

There was noticeable change in the baseline model for the replicated study. In the first study the baseline model, selecting the most frequently occurring monitoring value, was 100. In the
replicated study, the baseline model utilized the monitoring value 50. The study seems to be slightly skewed with nearly 21% of reported monitoring values being 100. 9.9% of reported monitoring values were 100 in the replicated study. A monitoring value of 50 was reported most frequently in the replicated study, 12.3% of self-reports. The difference in distribution (Figure 3) of metacognitive monitoring values is interesting considering the first study (skewed towards values of 100) used version 1.0 of Crystal Island, while the replicated study was conducted with version 2.0. Recall that the notable difference between the two versions is the refinement of content, both curriculum and narrative.

Due to the more even distribution of metacognitive monitoring values in the replicated study we see a notable decline in the performance of the baseline model (12.31% accuracy) compared to the baseline model of the skewed distribution of monitoring values collected in the first study (20.76% accuracy). There is relatively little difference between the naïve bayes models of both studies. The decision tree model from the replicated study (95.55% accuracy) is able to more frequently, accurately predict the correct monitoring value compared to the decision tree of the first study (94.36% accuracy) ($\chi^2(1, N = 3570) = 82.9, p < 0.001$). The shift in the distribution if monitoring values can be attributed to the level of challenge and difficulty found in version 2.0 of Crystal Island. This version of Crystal Island requires the application of microbiology domain knowledge and the scientific method, whereas version 1.0 did not require such depth of knowledge to be applied for success.

5.4 Study Limitations

With regard to limitations, the experiment was again designed to control for time on task, allowing 35 minutes for the intervention. As in the first study, 35 minutes was not sufficient for students to solve the mystery and complete the content of Crystal Island. The alternative design, of controlling for task completion, as mentioned in the limitations of the first study is worth investigation.
6. Concluding Remarks

Narrative is receiving increasing attention in the ITS community as a medium for contextualizing learning in meaningful ways while creating rich, engaging experiences for learners. NLEs provide a framework for learning engagement and self-regulation by providing a supportive context for student control and autonomy, necessary for the growth of self-regulated learning. Thus, it will be required by future intelligent narrative-centered learning environments to diagnose, understand, and respond to student self-regulation. One approach to beginning the exploration of developing intelligent SRL detection models is the use data-driven methodologies that can enrich runtime SRL models. The results of this study indicate that an inductive approach leads to models of metacognitive monitoring that are capable of accurate runtime diagnosis.

The results highlight several important directions for future work. First, analysis of student calibration in metacognitive monitoring accuracy should be investigated. This is a necessary extension to further customize pedagogical feedback on student metacognitive monitoring. Second, it is important to understand the misclassifications of induced models and how the misclassifications may inadvertently affect pedagogical strategies. Third, it is necessary to begin to develop and systematically evaluate how to scaffold student learning experiences in light of information obtained through induced SRL models, such as the models of metacognitive monitoring described in this work. Lastly, the inductive approach holds much promise for modeling a variety of SRL components (e.g., efficacy, affect, interest). Future work should investigate the merit of combining data-driven SRL models for scaffolding student learning experiences in narrative-centered learning environments and identifying key features of student behavior useful for diagnosing self-regulated learning.
References

