1. (25 pts) Let \(A = \begin{bmatrix} 1 & 3 & 1 \\ 2 & 4 & 4 \end{bmatrix} \).

 (a) Find some bases for \(N(A) \) and \(C(A^T) \).

 (b) Split the vector \(x = \begin{bmatrix} 1 \\ 4 \\ 5 \end{bmatrix} \) into the sum \(x_r + x_n \), where \(x_r \) is the row space component and \(x_n \) is the nullspace component.

 (c) Is it possible to find a non-zero vector in the intersection \(N(A) \cap C(A^T) \)?

2. (25 pts) Let \(S \) be the subspace of \(\mathbb{R}^4 \) spanned by \((1, 0, -2, 1) \) and \((0, 1, 3, -2) \). Find a basis for the orthogonal complement \(S^\perp \)?

3. (25 pts) (a) Find the projection of the vector \((1, 4) \) onto \((1, 3) \).

 (b) Let \(Q \) be the point on the line \(y = \frac{1}{3}x \) that is closest to the point \((1, 4) \). Determine the coordinates of \(Q \).

4. (25%) (a) Find the projection of \(b = (1, 2, 3)^T \) onto the column space of

 \[A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \\ 0 & 2 \end{bmatrix}. \]

 (b) Find the projection of \(b \) onto the first column vector of \(A \), and the projection onto the second column of \(A \). What is their sum?