1. (20 pts) Judge if the following statements are true (T) or false (F).
 (a) For any matrix $A \in M_{mn}$ the map $T(x) = Ax$ defines a linear transformation from \mathbb{R}^n to \mathbb{R}^m.
 (b) Let a fixed $B \in M_{mn}$, then the map $T(A) = AB$ is a linear transformation from M_{mn} to M_{nn}.
 (c) The map $f(x) = (x_1 - 2x_2 + 2, x_1 - x_3, 3x_1 + x_2)$ defines a linear transformation from \mathbb{R}^3 to \mathbb{R}^3.
 (d) The equation $Ax = b$ is always solvable when A has full rank.
 (e) If nullity $(A) = 5$, then nullity $(A^T A) = 5$.
 (f) If rank $(A^T A) = 5$, then nullity $(A) = 6$.
 (g) The normal equation $A^T Ax = A^T b$ always has a unique solution.
 (h) If the vector v_3 is a linear combination of two linearly independent vectors $\{v_1, v_2\}$, then the Gram-Schmidt process on $\{v_1, v_2, v_3\}$ will give three non-zero orthonormal vectors.
 (i) If T and S are linear transformations from V to V, then $2T + 3S$ is also a linear transformation. Here $2T + 3S$ is given by $(2T + 3S)(v) = 2T(v) + 3S(v)$.
 (j) The map $T(f) = 3f - 2f'$ is a linear transformation on the space P_3 of polynomials of degree less than or equal to 3. (f' is the derivative of f)

2. (20 pts) Let T be the linear transformation of \mathbb{R}^2 that reflects about the line $y = x$ and then rotates 30 degrees counterclockwise. Find the matrix A for T such that $T(x) = Ax, x \in \mathbb{R}^2$.

3. (20 pts) Solve the following least squares system

 $5x_1 + 4x_2 = 1$
 $x_1 - x_2 = 2$
 $2x_1 + 3x_2 = -2$
 $3x_1 - 5x_2 = 0$

4. (20 pts) Use the Gram-Schmidt process to find an orthonormal basis for $RS(A)$, where

 $A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 0 \\ 1 & 3 & 0 & 0 \end{bmatrix}$

5. (20 pts) Let $f(x) = (x_1 + x_2, 3x_1 - 4x_2, 3x_1 - x_2)^T$ be a linear transformation from \mathbb{R}^2 to \mathbb{R}^3.
 (a) Can you find all vectors $x \in \mathbb{R}^2$ such that $f(x) = (0, 0, 0)^T$.
 (b) Find all vectors x such that $f(x) = (2, -1, 2)^T$.