1. \[f(x) = \frac{1}{4} x^{-1} \]
 \[f'(x) = -\frac{1}{4} x^{-2} \]
 \[f'(2) = -\frac{1}{4} \left(\frac{1}{4}\right) = \frac{-1}{16} \]

2. Slope: pay will increase by $0.50 for every additional unit sold.
 y-intercept: pay if the salesperson sells no goods.

3. \[f(x) = 2x - 5 \]
 \[f'(x) = \frac{5}{2} \]
 \[y = \frac{1}{x} = x^{-1} \]
 \[y' = -x^{-2} = \frac{-1}{x^2} \]

4. \[y = \sqrt{x} \]
 Point (25, 5)
 \[y' = \frac{1}{2} x^{-\frac{1}{2}} \]
 \[y'(25) = \frac{1}{2} \cdot \frac{1}{\sqrt{25}} = \frac{1}{10} \]

5. \[f(x) = 3x^2 + 1 \]
 \[f'(x) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{3h^2 + 1 - 1}{h} = \lim_{h \to 0} 3h = 0 \]

6. \(\text{not differentiable: } x = -2, 1, 2 \)
 \(\text{not continuous: } x = -2, 1 \)
 \(\text{increasing } (-\infty, -2) \cup (1, 2) \)
 \(\text{decreasing } (-2, 1) \cup (2, \infty) \)

7. \[S(t) = 50t - \frac{7}{t+1} = 50t - 7(t+1)^{-1} \]
 \[W(t) = S'(t) = 50 + 7(t+1)^{-2} \]
 \[v(1) = 50 + \frac{7}{4} \]
 \[a(t) = v'(t) = -14(t+1)^{-3} \]
 \[a(1) = -14 \cdot \frac{1}{8} = -\frac{7}{4} \]

8. \[V = x^2 y = 250 \text{ ft}^3 \]
 \[y = \frac{250}{x^2} \]
 \[C'(x) = 4x - 500x^{-2} = 0 \]
 \[4x = \frac{500}{x^2} \]
 \[x^3 = 125 \]
 \[x = 5 \]

9. \[f(x) = (5x+1)^4 \]
 \[f'(x) = 4(5x+1)^3 \cdot 5 = 20(5x+1)^3 \]

10. \[(2x^{-2})^2 = 2 \]
 \[2x^{-4} = 2 \]
 \[x = \frac{5}{2} \]
12. $v(t) = 65 (1 - e^{-16t}) = 65 - 65e^{-16t}$

13. $3000 = 1000 e^{1.1t}$

14. $f(x) = 2e^{-3x}$
\[f'(x) = 2e^{-3x} \cdot (-3) = -6e^{-3x} \]

15. $y = \ln(x^3 + 2x + 1)$
\[y' = \frac{1}{x^3 + 2x + 1} \cdot (3x^2 + 2) = \frac{3x^2 + 2}{x^3 + 2x + 1} \]

16. (a) $P(t)$ represents the amount of a certain radioactive material present after t years.
(b) t is the time in years.

17. $V = \pi \int_0^4 (x^2)^2 \, dx = \pi \int_0^4 x^4 \, dx = \pi \left[\frac{1}{5} x^5 \right]_0^4 = \pi \left(\frac{1}{5} 4^5 - 0 \right) = \frac{1024\pi}{5}$

18. $\int_0^2 \frac{2x}{(x^2 + 1)^2} \, dx$
\[u = x^2 + 1 \quad x = 0 \quad u = 1 \]
\[du = 2x \, dx \quad x = 1 \quad u = 2 \]
\[\int_1^2 \frac{1}{u^2} \, du = \int_1^2 u^{-2} \, du = -\frac{1}{u} \bigg|_1^2 = -\frac{1}{2} \left(\frac{1}{4} - 1 \right) = \frac{3}{8} \]

19. $\int_0^3 2x \left(e^{3x^2}\right) \, dx$
\[u = 3x^2 \quad x = 0 \quad u = 0 \]
\[du = 6x \, dx \quad x = 1 \quad u = 3 \]
\[\frac{1}{3} \int_0^3 e^u \, du = \frac{1}{3} \left(e^3 - 1 \right) \]

20. $C(t) = 1.1t + 2.4$
\[t = 0 \quad \Rightarrow \quad C = 1.1 \cdot 0 + 2.4 = 2.4 \]

21. $V(t) = \int 2t \, dt = \int (2t + 1) \, dt = t^2 + t + C$
\[V(0) = 0 + 0 + C = 0 \quad C = 0 \]
\[V(t) = t^2 + t \]
\[S(t) = \frac{1}{2} (t^2 + t) \, dt = \frac{1}{2} t^3 + \frac{1}{2} t^2 + C, \]
\[S(0) = 0 + 0 + C = 0 \quad C = 0 \]

22. $S = \int_{-2}^{2.5} 2 \sqrt{x} \, dx = 2 \int_{-2}^{2.5} x^{1/2} \, dx = 2 \left[\frac{2}{3} x^{3/2} \right]_{-2}^{2.5} = \frac{4}{3} \left(2.5^{3/2} - 0 \right) = 5.27$
\[y = x^2 + 1 \]

\[y = 3 - x \]

25 \[y = x^3 - 6x^2 + 9x + 3 \]
\[y' = 3x^2 - 12x + 9 = 0 \]
\[3(x^2 - 4x + 3) = 0 \]
\[3(x - 3)(x - 1) = 0 \]
\[x = 3, 1 \]
\[y' \leftarrow + \quad - \quad + \rightarrow \]

\[f(3) = 3 \quad \text{rel. min at } x = 3 \]
\[f(1) = 7 \quad \text{rel. max at } x = 1 \]

26 The second derivative is the derivative of the derivative. It is also the rate of change of the rate of change. It tells us about concavity of a function.

27 \[y = \frac{x + (x^5 + 1)^{10}}{3} = \frac{1}{3} x + \frac{10}{3} (x^5 + 1)^9 \]
\[y' = \frac{1}{3} + \frac{10}{3} \left(5x^4 (x^5 + 1)^9 \right) \]

28 \[y = \sqrt{1 - x^2} = (1 - x^2)^{1/2} \]
\[y' = \frac{1}{2} (1 - x^2)^{-1/2} \cdot (-2x) = \frac{-x}{\sqrt{1 - x^2}} \]

29 \[y = x^4 - 5x^3 + 7 \]
\[y' = 4x^3 - 15x^2 \]
\[y'' = 12x^2 - 30x \]
\[y'' (3) = 108 - 90 = 18 \]

30 \[\frac{da}{dt} (a^2 t^2 + b^2 t + c^2) = 2a^2 t + b^2 \]

31 \[y = \frac{3x^2 - 2x}{x + 3} \]
\[y' = \frac{(x+3)(6x-2)-(3x^2-2x)(1)}{(x+3)^2} \]
\[= \frac{3x^2 + 18x - 6}{(x+3)^2} \]
32 \[y = (x^2 + 1)(x^2 - 1) \]
\[y' = \left[(x^2 + 1)(2x) + (x^2 - 1)(2x)\right] = 2x(x^2 + 1 + x^2 - 1) = 4x^3 \]

33 \[f(x) = 2e^{1-3x} \]
\[f'(x) = 2e^{1-3x} \cdot (-3) = -6e^{1-3x} \]

34 \[e^{2x} = 5 \]
\[2x = \ln 5 \]
\[x = \frac{\ln 5}{2} \]

35 \[\ln 3x = 2 \]
\[3x = e^2 \]
\[x = e^2/3 \]

36 \[y = \ln (x^2) = 2 \ln x \]
\[y' = \frac{2}{x} \]

37 \[P(t) = 300e^{0.01t} \]

38 The derivative represents the instantaneous slope or rate of change.

39 \[g(t) = 5t - \sqrt{t} = 5t - t^{1/2} \]
\[g'(t) = 5 - \frac{1}{2} t^{-3/2} \]
\[g'(3) = \left[5 - \frac{1}{2(3)^{3/2}}\right] \]

40 \[y = z^3 - 4z^2 + 2 - 3 \]
\[y' = 3z^2 - 2 \quad y'(3) = 27 - 24 + 1 = 4 \]

41 \[y = 4(5x+1)^2 \]
\[y' = 4 \cdot 2(5x+1) \cdot 5 = 40(5x+1) \]
\[y'(-1) = 40(-4) = -160 \]

42 \[\int (x^3 + 6x^2 - x) \, dx \]
\[= \frac{1}{4}x^4 + 2x^3 - \frac{1}{2}x^2 + C \]

43 \[\int_0^1 e^{x/3} \, dx = 3e^{x/3} \bigg|_0^1 = 3\left(e^{1/3} - 1\right) \]
44 \[\int \frac{1}{2x+1} \, dx = \ln \left| \frac{2x+1}{2} \right| + C \]

45 \[\int_0^1 8x(x^2+1)^5 \, dx \]
\[u = x^2 + 1 \quad x = 0 \quad u = 1 \]
\[dx = 2x \, dx \quad x = 1 \quad u = 2 \]
\[\frac{1}{2} \, dx = x \, dx \]
\[\frac{1}{2} \int_1^2 3u^5 \, du = \frac{3}{2} \left(\frac{1}{6} \right) \left(\frac{1}{6} \right)^{1/2} = \frac{1}{4} (2^6 - 1) = \frac{63}{4} \]

46 \[\text{Area} = \frac{2}{3} (f(1) + f(1^{1/3}) + f(1^{2/3})) \]
\[= \frac{2}{3} \left(1 + \frac{125}{27} + \frac{343}{27} \right) = \frac{110}{9} \]

47 \[\int_0^\infty e^{-x} \, dx = \lim_{b \to \infty} \int_0^b e^{-x} \, dx = \lim_{b \to \infty} -e^{-x} \bigg|_0^b \]
\[= \lim_{b \to \infty} -e^{-b} + 1 = 1 \]

48 \[i = \frac{.09}{12} \]

a) new balance = previous balance + interest - payment
\[y_{n+1} = y_n + \frac{.09}{12} y_n - 350 \]
\[y_{n+1} = 1.0075 y_n - 350, \quad y_0 = 38,000 \]

b) \[a = 1.0075 \quad b = -350 \]
\[y_n = \frac{b}{1-a} + \left(y_0 - \frac{b}{1-a} \right) a^n \quad \text{(for } a \neq 1) \]
\[y_n = \frac{-350}{1-1.0075} + \left(38,000 - \frac{-350}{1-1.0075} \right) (1.0075)^n = 416,166.67 + (38,000 - 416,166.67)(1.0075^n) \]

49 \[\text{initial } y_0 \quad i = .06 \quad \text{withdrawal} = 120 \]

a) \[y_{n+1} = y_n + .06 y_n - 120 \]
\[y_{n+1} = 1.06 y_n - 120, \quad \text{initial } y_0 \]

b) \[\frac{b}{1-a} = \frac{-120}{1-1.06} = \frac{120}{.06} = 2000 \]

50 \[\text{Avg. value} = \frac{1}{3-1} \int_1^3 (x^3+1) \, dx = \frac{1}{2} \left(\frac{1}{4} x^4 + x \bigg|_1^3 \right) = \frac{1}{2} \left(\frac{81}{4} + 3 - \left(\frac{1}{4} + 1 \right) \right) \]
\[= \frac{1}{2} (20 + 2) = \boxed{11} \]