Show all of your work in your blue book for each problem. Work only one problem per side of the page. Box in your answers. GOOD LUCK!

1. Given \(f(x) = x^2 + 2 \) on the interval \(1 \leq x \leq 3 \), compute the Riemann sum using right endpoints with \(n = 4 \). Is this an overestimate or an underestimate?

2. Find the area of the region bounded by the curve \(f(x) = 4x - x^2 \) and the line \(y = 3 \).

3. Determine the average value of \(f(x) = e^{x-4} \) over the interval \(x = 5 \) and \(x = 7 \).

4. Compute each of the following:
 (a) \(\int (5x^2 - \frac{6}{x}) \, dx \)
 (b) \(\int (7x + 2)^2 \, dx \)

5. Calculate \(\int_{1}^{7} \frac{1}{x^2} \, dx \).

6. Determine the following integrals by making the appropriate substitutions:
 (a) \(\int \frac{x^2}{\sqrt{x^2 + 4}} \, dx \)
 (b) \(\int_{1}^{2} 3x^2 \cdot (x^3 - 3)^5 \, dx \)

7. Set up the definite integral that gives the area of the region between \(y = x^2 - 5x \) and the x-axis from \(x = 2 \) and \(x = 6 \). Just set up the integral – do not solve.

8. Find the volume generated by revolving \(y = 4 - x \) around the x-axis from 1 to 2.