Abstract—This paper introduces a new method to blindly estimate the transmit power of multiple signal sources in multi-antenna fading channels, when the number of sensing devices and the number of available samples are sufficiently large compared to the number of sources. This work makes use of recent advances in the field of large dimensional random matrix theory that result in a simple and computationally efficient consistent estimator of the power of each source. We provide a criterion to determine the minimum number of sensors and the minimum number of samples required to achieve source separation. Simulations are performed that corroborate the theoretical claims and show that the proposed power estimator largely outperforms classical power inference techniques.

I. INTRODUCTION

At a time when radio resources become scarce, the alternative offered by cognitive radios [1] is gaining more and more interest. A cognitive (or flexible) wireless network is a set of opportunistic entities, referred to as the secondary network, that benefit from unused spectrum resources to establish communication while generating little or even no interference to the licensed networks, collectively referred to as the primary network. This is achieved by letting the secondary devices sense the communication channel for the presence of active transmissions and exchange the collected information among the secondary network, in order to perform optimal decisions on the opportunistic communication strategy to apply. The difficulty for the secondary network does not lie in the detection of downlink transmissions from fixed access points to licensed mobile users in the primary network, but rather lies in the reliable detection of the uplink transmissions from the mobile licensed users to the primary access points. If, in addition to detecting active transmissions, the secondary devices can, at all time, detect the exact number of primary mobile sources and evaluate the power used by every individual source, the transmission policy in the secondary network can be accurately and dynamically adapted. An example of use is found in the recent development of femtocells, i.e. small area cells that operate indoors by overlaying the spectrum licensed to outdoors macrocells. Femtocells have the capabilities to self-organize and to dynamically access spectrum resources [2]-[3]; specifically, the first requirement of a femtocell is to minimally interfere the overlaid licensed macrocell network, while simultaneously trying to optimize transmission data rates within the femtocell. This requires that the femtocells be constantly aware of the outdoor activity of the macrocell mobile users. As such, macrocell-femtocell networks are cognitive wireless networks in which the established macrocell network is seen as the primary network, while the femtocell network plays the role of the opportunistic secondary network. In [4], the achievable rates of a multi-tier macrocell-femtocell network are derived in the very general case where all entities in the networks are embedded with multiple antennas. The optimal coverage of the secondary networks is computed under several assumptions on the side information available at the femtocells. Among these assumptions, [4] supposes that the femtocells have perfect knowledge of the distances to the macrocell user equipments. This last assumption suggests that the femtocells have a means, either global positioning system or some sort of detection mechanism, to perfectly evaluate the distances to the active licensed users. In the present work, we address the problem of the consistent estimation of the distance of a secondary network to each licensed user or, more exactly, the problem of the consistent estimation of the individual source transmit powers. We provide a framework for the secondary network (i) to identify the number of primary sources, (ii) to determine the number of transmit antennas for every source and (iii) to consistently estimate the transmit power from each source.

The difficulty of estimating transmit powers lies in the little information known a priori by the secondary network: the transmitted data and the transmission channels are usually inaccessible. This has motivated much work in the direction of blind signal source detection methods, based on the Neyman-Pearson test, in Gaussian channels [5], Rayleigh fading channels [6], multiple antenna channels [8], and large dimensional multi-antenna channels [7], but these successive works are designed to answer a binary hypothesis test on the presence or absence of a signal source. Alternatively, in [9], a method is derived to separate signal sources and estimate the number of those sources. To solve the harder problem of power inference, it is necessary to assume that the amount of available sensors is larger than the number of active sources, e.g. individual secondary users are equipped with many antennas, or a large number of secondary users, each of them equipped with few antennas, collect their received data via a central backbone; this assumption is valid in the context of femtocells that can communicate through wired private or public networks. The condition on the number of sensors allows one to model
the multi-dimensional channel H from the sources to the secondary users, the source transmit data X and the additive received noise W, as large dimensional random matrices (no specific matrix size definition is required at this point). Denoting P a diagonal matrix whose entries are the source powers, the power detection problem boils down to estimating the entries of P from the sole knowledge of the received data matrix $Y = HP^{\dagger}X + W$, as all system dimensions (number of antennas per transmit source, number of sensors, number of available samples) are large. If the available samples largely outnumber the sensors (of several orders of magnitude), and the number of sensors are much larger than the number of transmit antennas, the strong law of large numbers ensures that the diagonal entries of P can be retrieved directly from the eigenvalues of YY^H, and the problem is immediately solved. When all dimensions are large but are of the same order of magnitude, the law of large numbers no longer applies and one has to consider results from the theory of large dimensional random matrices, e.g. [15], used in the present article to derive the asymptotic eigenvalue distribution of YY^H as a function of P. To this day and to the best of our current knowledge, no computationally-efficient consistent estimator for the entries of P has been proposed. Among the existing techniques are discretization and convex optimization strategies [10], [11], which tend to directly invert the result from [15] (although an explicit inverse was not available at that time), and moment-based approaches [12], [13], which use the empirical moments of the eigenvalue distribution YY^H to infer the entries of P. Some of these moment-based methods are computationally cheap, but provide in general consistent estimators of the moments of the eigenvalue distribution of P, instead of estimators of the sought powers. These techniques are therefore expected to perform worse than methods that would fully exploit the eigenvalue distribution of YY^H, and not only a few moments. This problem is successfully addressed in [14] for the simpler sample covariance matrix model $Y' = P^{\dagger}X$; in [14], consistent estimators for the individual entries of P are provided, which are based on the full eigenvalue distribution of X^HXP.

The present work generalizes this result to infer the entries of P from the observed matrix $Y = HP^{\dagger}X + W$. The novel estimator proposed here has a very compact form, is computationally efficient and is shown in simulations to largely outperform moment-based approaches. The estimator is moreover robust to small system dimensions. We specifically show that, if the number of sensing entities is larger than the number of active transmitters in the primary network, it is possible to evaluate both the exact number of transmitters and their respective transmit powers (and, for that matter, the number of transmit antennas per source can also be estimated). Otherwise, ambiguous scenarios might arise where multiple transmitters may be confused as a single transmitter with estimated transmit power the average of the true transmit powers of these transmitters. Additionally, we provide an expression of the minimum number of sensors required to separate transmit sources of similar power.

The remainder of this paper is structured as follows: Section II introduces the system model. In Section III, we study the asymptotic spectrum of the eigenvalues of YY^H. In Section IV, the novel power estimator is derived. Section V provides simulation results. Section VI concludes this work.

Notations: In the following, boldface lower case symbols represent vectors, capital boldface characters denote matrices (I_N is the size-N identity matrix). The transpose and Hermi-
tian transpose operators are denoted $(\cdot)^T$ and $(\cdot)^H$, respectively. We denote by \mathbb{C}^+ the set $\{z \in \mathbb{C}, \Im[z] > 0\}$ and by \mathbb{C}^- the set $\{z \in \mathbb{C}, \Im[z] < 0\}$. The left-limit in x of a function f is denoted $f(x-)$.

II. SYSTEM MODEL

Consider a wireless (primary) network in which K entities are transmitting data simultaneously on the same frequency resource. Transmitter $k \in \{1, \ldots, K\}$ has transmission power P_k and is equipped with n_k antennas. We denote $n = \sum_{k=1}^{K} n_k$ the total number of transmit antennas of the primary network. Consider also a secondary network composed of a total of N, $N \geq n$, sensing devices (they may be N single antenna devices or multiple devices embedded with multiple antennas whose sum equals N); we shall refer to the N sensors collectively as the receiver. This scenario is depicted in Figure 1. To ensure that every sensor in the secondary network, e.g. in a femtocell, roughly captures the same amount of energy from a given transmitter, we need to assume that the respective transmitter-sensor distances are alike. This is a realistic assumption for an in-house femtocell network. Denote $H_k \in \mathbb{C}^{N \times n_k}$ the multiple antenna channel matrix between transmitter k and the receiver. We assume that the entries of $\sqrt{N}H_k$ are independent and identically distributed with zero mean, unit variance and finite fourth order moment. At time instant m, transmitter k emits the multi-antenna signal $x_k^{(m)} \in \mathbb{C}^{n_k}$, with entries assumed to be independent and identically distributed of zero mean, variance σ^2 and finite fourth order moment on every sensor; we denote $\sigma w_k^{(m)} \in \mathbb{C}^{N}$ the receive noise vector where the entries of $w_k^{(m)}$ have unit variance. At time m, the
receiver therefore senses the signal \(y^{(m)} \in \mathbb{C}^N \) defined as
\[
y^{(m)} = \sum_{k=1}^{K} \sqrt{P_k} H_k x_k^{(m)} + \sigma w^{(m)}. \tag{1}
\]
Assuming the channel fading coefficients are constant over at least \(M \) consecutive sampling periods, by concatenating \(M \) successive signal realizations into \(Y = [y^{(1)}, \ldots, y^{(M)}] \in \mathbb{C}^{N \times M} \), we have
\[
Y = \sum_{k=1}^{K} \sqrt{P_k} H_k X_k + \sigma W \tag{2}
\]
where \(X_k = [x_k^{(1)}, \ldots, x_k^{(M)}] \in \mathbb{C}^{n_k \times M} \), for every \(k \), and \(W = [w^{(1)}, \ldots, w^{(M)}] \in \mathbb{C}^{N \times M} \). This can be further rewritten as
\[
Y = H P^{\frac{1}{2}} \Sigma + \sigma W \tag{3}
\]
where \(P \in \mathbb{R}^{n \times n} \) is diagonal with first \(n_1 \) entries \(P_1 \), subsequent \(n_2 \) entries \(P_2 \), \ldots, last \(n_K \) entries \(P_K \), \(H = [H_1, \ldots, H_K] \in \mathbb{C}^{N \times n} \) and \(X = [X_1, \ldots, X_K]^T \in \mathbb{C}^{n \times M} \). By convention, we shall assume \(P_1 \leq \ldots \leq P_K \).

Remark 1: The statement that \(\sqrt{N} H, X \) and \(W \) have independent entries of finite fourth order moment is meant to provide as loose assumptions as possible on the channel, signal and noise properties. In the simulations of Section V, the entries of \(H, W \) are taken Gaussian. Nonetheless, according to our assumptions, the entries of \(X \) need not be identically distributed, but may originate from a maximum of \(K \) distinct distributions. This translates the realistic assumption that different data sources may use different symbol constellations (e.g. M-QAM, M-PSK); the finite fourth moment assumption is obviously verified for finite constellations.

Our objective is to infer the values of the powers \(P_1, \ldots, P_K \) from the realization of the random matrix \(Y \). This is the subject of Section IV. In the sequel, we introduce tools from large dimensional random matrix theory and we provide a thorough analysis of the eigenvalue distribution of \(\frac{1}{M} Y Y^H \) as \(N, n \) and \(M \) grow large at the same rate.

III. Spectral Analysis

We start by analyzing the eigenvalue distribution of \(\frac{1}{M} Y Y^H \) when \(n, N \) and \(M \) grow large at a similar rate. This is a fundamental prior step to the proper estimation of \(P_1, \ldots, P_K \).

A. Limiting spectrum of \(\frac{1}{M} Y Y^H \)

We first define the Stieltjes transform of a distribution function.

Definition 1: Let \(F \) be a distribution function. For \(z \in \mathbb{C} \setminus \mathbb{R}^+ \), the Stieltjes transform \(m(z) \) of \(F \) is defined as
\[
m(z) = \int \frac{1}{t-z} dF(t). \tag{4}
\]
For \(x \in \mathbb{R} \) a continuity point of \(F \), we have the inverse Stieltjes transform
\[
F(x) = \lim_{y \to 0^+} \int_{-\infty}^{x} \Im[m(t+i\eta)] dt. \tag{5}
\]
In this section, we prove the following result

Theorem 1: Let \(B_N = \frac{1}{M} Y Y^H \), with \(Y \) defined as in (3). Then, for \(M, N, n \) growing large with limit ratios \(M/N \to c, N/n_k \to c_k, 0 < c, c_1, \ldots, c_K < \infty \), the empirical eigenvalue distribution \(F_{B_N} \) of \(B_N \), referred to as the empirical spectral distribution (e.s.d.) of \(B_N \), converges almost surely to the deterministic distribution function \(F \), referred to as the limit spectral distribution (l.s.d.) of \(B_N \), whose Stieltjes transform \(m_F(z) \) satisfies, for \(z \in \mathbb{C}^+ \),
\[
m_F(z) = cm_E(z) + (c - 1) \frac{1}{z} \tag{6}
\]
where \(m_E(z) \) is the unique solution with positive imaginary part of the implicit equation in \(m_E \),
\[
\frac{1}{m_E} = -\sigma^2 + \frac{1}{f} - \sum_{k=1}^{K} \frac{P_k}{c_k + 1 + P_k f} \tag{7}
\]
in which we denoted \(f \) the value
\[
f = (1 - \epsilon) m_E - cz m_E^2. \tag{8}
\]

The rest of this section is dedicated to the proof of Theorem 1. First remark that (3) can be further simplified into
\[
Y = (HP^{\frac{1}{2}} + \sigma I_N) \begin{pmatrix} X \\ W \end{pmatrix}. \tag{9}
\]
Appending \(Y \in \mathbb{C}^{N \times M} \) into the larger matrix \(\begin{pmatrix} Y \end{pmatrix} \in \mathbb{C}^{(N+n) \times M} \), we recognize that \(\frac{1}{M} Y Y^H = \begin{pmatrix} Y \\ W \end{pmatrix} \begin{pmatrix} Y & W \end{pmatrix} \) is a sample covariance matrix, for which the population covariance matrix, unitarily equivalent to \((HP^{\frac{1}{2}} + \sigma I_N 0) \), is non-deterministic and the random matrix \((X \ W) \) has independent (non-necessarily identically distributed) entries with zero mean and variance 1.

At this point, we need the following result.

Proposition 1: Let \(Z_n \in \mathbb{C}^{N \times n} \) have complex independent entries of zero mean, unit variance and finite \(2 + \epsilon \) order moment, for some \(\epsilon > 0 \), uniformly bounded over \(N, n \), and \(T_n \in \mathbb{R}^{n \times n} \) be Hermitian with eigenvalue distribution converging almost surely to \(T, as N \to \infty \). Let \(A_n = \frac{1}{n} Z_n T_n Z_n^H \). Then, as \(n, N, n \to \infty \), \(N/n \to c > 0 \), the eigenvalue distribution of \(A_n \) converges weakly and almost surely to \(A \) with Stieltjes transform \(m_A(z), z \in \mathbb{C}^+ \), being the unique solution with positive imaginary part of the equation in \(m_A \)
\[
z = -\frac{1}{m_A} + \frac{1}{c} \int \frac{t}{1 + tm_A} dT(t). \tag{11}
\]

Proof: The proof originates from Theorem 4.1 of [16] that states that, if the entries \(z_{ij}^{(n)} \) of \(Z_n \) have zero mean, unit variance and are such that, for any \(\eta > 0 \),
\[
\frac{1}{\eta^2 N n} \sum_{1 \leq i \leq n} \sum_{1 \leq j \leq n} \mathbb{E} \left[|z_{ij}|^2 I_{|z_{ij}| \geq \sqrt{\eta n}} \right] \to 0, \tag{12}
\]
the eigenvalue distribution of \(A_n \) converges weakly to some distribution \(A \) whose Stieltjes transform \(m_A(z) \) is a function of the Stieltjes transform of \(m_T(z) \) and \(c \) only; \(m_A(z) \) is
Of course, Proposition 1 can be equally stated explicitly given by (4.4.4) of [16]. If the $z_{ij}^{(n)}$ have uniformly bounded $2 + \varepsilon$ moment for some $\varepsilon > 0$, it is straightforward to see that (12) is satisfied. Now, in the special case where Z_n has independent and identically distributed (i.i.d.) entries of zero mean and unit variance, Theorem 4.3 of [16] shows that $m_A(z)$ satisfies (11). But then, since $m_A(z)$ is only a function of c and T whatever the distribution of the independent entries of Z_n, $m_A(z)$ that solves (11) is the Stieltjes transform of A for the more general case.

Remark 2: Of course, Proposition 1 can be equally stated when $z \in \mathbb{C}^-$. In that case, $m_A(z)$ is the unique solution of (11) with negative imaginary part.

From Proposition 1, since H has independent entries with finite fourth order moment, we have that the e.s.d. of H^TH converges weakly and almost surely to a limit distribution G as $N,n_1,\ldots,n_K \to \infty$ with, $N/n_k \to c_k > 0$. For $z \in \mathbb{C}^+$, the Stieltjes transform $m_G(z)$ of G is the unique solution with positive imaginary part of the equation in m_G,

$$z = -\frac{1}{m_G} + \sum_{k=1}^{K} \frac{1}{c_k + 1 + P_k m_G}. \quad (13)$$

The almost sure convergence of the e.s.d. of H^TH ensures the almost sure convergence of the e.s.d. of the matrix $(H^TH + \sigma^2 I_N 0 0)$. Since $m_G(z)$ evaluated at $z \in \mathbb{C}^+$ is the Stieltjes transform of the l.s.d. of $(H^TH + \sigma^2 I_N)$ evaluated at $z + \sigma^2$, adding $N - n$ zero eigenvalues, we finally have that the e.s.d. of $(H^TH + \sigma^2 I_N 0 0)$ tends almost surely to a distribution H whose Stieltjes transform $m_H(z)$ satisfies

$$m_H(z) = \frac{c_0}{1 + c_0 m_G(z - \sigma^2)} - \frac{1}{1 + c_0 z}, \quad (14)$$

for $z \in \mathbb{C}^+$, where we denoted c_0 the limit of the ratio N/n, i.e. $c_0 = (c_1^{-1} + \ldots + c_K^{-1})^{-1}$.

As a consequence, the sample covariance matrix $\frac{1}{M} YY^H$ has a population covariance matrix which is not deterministic but whose e.s.d. has an almost sure limit H for increasing dimensions. Since X and W have entries with finite fourth order moment, we can again apply Proposition 1, and we have that the e.s.d. of $B_N \Delta \frac{1}{M} YY^H$ converges almost surely to the limit F whose Stieltjes transform $m_F(z)$ is the unique solution in \mathbb{C}^+ of the equation in m_F,

$$z = -\frac{1}{m_F} + \frac{1}{c} \left(1 + \frac{1}{c_0}\right) \int \frac{t}{1 + tm_F} dH(t) \quad (15)$$

$$= -\frac{1}{m_F} + \frac{1}{c m_F} \left[1 - \frac{1}{m_F} m_H \left(-\frac{1}{m_F}\right)\right] \quad (16)$$

for all $z \in \mathbb{C}^+$.

For $z \in \mathbb{C}^+$, $m_F(z) \in \mathbb{C}^+$. Therefore $-1/m_F(z) \in \mathbb{C}^+$ and one can evaluate (14) at $-1/m_F(z)$. Combining (14) and (16), we then have

$$z = -\frac{1}{c m_F(z)^2 m_G \left(-1/m_F(z) - \sigma^2\right)} + \left(\frac{1}{c - 1}\right) \frac{1}{m_F(z)}, \quad (17)$$

where, according to (13), $m_G(-1/m_F(z) - \sigma^2)$ satisfies

$$\frac{1}{m_F(z)} = -\sigma^2 + \frac{1}{m_G(-1/m_F(z) - \sigma^2)} - \sum_{k=1}^{K} \frac{1}{c_k + 1 + P_k m_G(-1/m_F(z) - \sigma^2)}. \quad (18)$$

Together with (17), this is exactly (7), with $f(z) = m_G(-1/m_F(z) - \sigma^2) = (1-c) m_F(z) - cz m_F(z)^2$.

Since the eigenvalues of the matrices B_N and $B_N \Delta$ only differ by n additional zeros, we also have that the Stieltjes transform $m_F(z)$ of the l.s.d. of B_N satisfies

$$m_F(z) = cm_F(z) + (c-1)\frac{1}{z}. \quad (19)$$

This completes the proof of Theorem 1. For further usage, notice here that (19) provides a simplified expression for $m_G(-1/m_F(z) - \sigma^2)$. Indeed we have,

$$m_G(-1/m_F(z) - \sigma^2) = -zm_F(z) m_F(z). \quad (20)$$

Therefore, the support of the (almost sure) l.s.d. F of B_N can be evaluated as follows: for any $z \in \mathbb{C}^+$, $m_F(z)$ is given by (6), in which $m_F(z)$ is solution of (7); the inverse Stieltjes transform formula (5) allows then to evaluate F from $m_F(z)$, for values of z spanning over the set $\{z = x + iy, x > 0\}$ and y small. This is depicted in Figure 2, when P has three distinct values $P_1 = 1, P_2 = 3, P_3 = 10$ and $n_1 = n_2 = n_3, N/n = 10, M/N = 10, \sigma^2 = 0.1$, as well as in Figure 3 for the same setup but $P_3 = 5$.

Two remarks on Figures 2 and 3 are of fundamental importance to the following. First, it appears that the asymptotic l.s.d. F of B_N is compactly supported and divided into up to $K + 1$ disjoint compact intervals, which we further refer to as clusters. Each cluster can be mapped onto one or many values in the set $\{\sigma^2, P_1, \ldots, P_K\}$. For instance, in Figure 3, the first cluster is mapped to σ^2, the second cluster to P_1 and the third cluster to the set $\{P_2, P_3\}$. Depending on the ratios c
Denoting, for c grow large with finite asymptotic ratios, the difference that consistency means here that, as all system dimensions the power B. Condition for separability

Application of the exact separation for the sample covariance exact separation for the current model originates from a direct

A consistent estimate for \hat{P}_k (associated to P_k in F) is distinct from cluster 1 (that associated to σ^2) and clusters i_F, $i \neq k$, (those associated to all other P_i), we assume now and for the rest of this article that the following conditions are fulfilled:

(i) k satisfies Assumption 1, given as follows

\begin{equation}
\sum_{r=1}^K \frac{1}{c_r} \left(\frac{P_r m_{G,k}}{(1 + P_r m_{G,k})^2} \right) < 1
\end{equation}

with $m_{G,1}, \ldots, m_{G,K}$ the K real solutions to the equation in m_G,

\begin{equation}
\sum_{r=1}^K \frac{1}{c_r} \left(\frac{P_r m_{G}}{(1 + P_r m_{G})^3} \right) = 1
\end{equation}

with the convention $m_{G,K+1} = 0$, and (ii) k satisfies Assumption 2 as follows,

\begin{equation}
\sum_{r=1}^K \frac{1}{c_r} \left(\frac{P_r m_{G,F,F}}{(1 + P_r m_{G,F,F})^2} \right) < c
\end{equation}

$1 - c_0 \left(\frac{\sigma^2 m_{F,F,1}}{(1 + \sigma^2 m_{F,F,1})^2} \right)

\begin{equation}
\sum_{r=1}^{K_{G-1}} \frac{1}{c_r} \left(\frac{(x_{G,r}^+ + \sigma^2)^2 m_{E,E,kG}}{(1 + (x_{G,r}^+ + \sigma^2)^2 m_{E,E,kG})^2} \right)
\end{equation}

Assumption 2: Denoting, for $j \in \{1, \ldots, K\}$,

\begin{equation}
j_G \triangleq \# \{ i \leq j \mid i \text{ satisfies Assumption 1} \},
\end{equation}

\begin{equation}
1 - c_0 \left(\frac{\sigma^2 m_{F,F,1}}{(1 + \sigma^2 m_{F,F,1})^2} \right)
\end{equation}

\begin{equation}
\sum_{r=1}^{K_{G-1}} \frac{1}{c_r} \left(\frac{(x_{G,r}^+ + \sigma^2)^2 m_{E,E,kG}}{(1 + (x_{G,r}^+ + \sigma^2)^2 m_{E,E,kG})^2} \right)
\end{equation}

where $x_{G,i}, x_{G,i}^+$, $i \in \{1, \ldots, K_G\}$ are defined by

\begin{equation}
x_{G,i}^- = -\frac{1}{m_{G,i}} + \frac{K}{\sum_{r=1} P_r c_r + 1 + P_r m_{G,i}}
\end{equation}

\begin{equation}
x_{G,i}^+ = -\frac{1}{m_{G,i}} + \frac{K}{\sum_{r=1} P_r c_r + 1 + P_r m_{G,i}}
\end{equation}

and c_0 and on the particular values taken by P_1, \ldots, P_K and σ^2, these clusters are either thin disjoint compact intervals, as in Figure 2, or they may overlap to generate larger compact intervals, as in Figure 3. We shall see, as is in fact required by the law of large numbers, that for increasing c and c_0, the asymptotic spectrum tends to be divided into thinner and thinner clusters. The inference technique proposed hereafter relies on the separability of the clusters associated to each P_i and to σ^2. Precisely, to be able to derive a consistent estimate of the transmitted power P_k, the cluster associated to P_k in F, number it cluster k_F, must be distinct from the neighboring clusters $(k - 1)_F$ and $(k + 1)_F$, associated to P_{k-1} and P_{k+1} respectively (when they exist), and also distinct from cluster 1 in F associated to σ^2. As such, in the scenario of Figure 3, our method will be able to provide a consistent estimate for P_1, but (so far) it will not succeed in providing a consistent estimate for either P_2 or P_3, since $2_F = 3_F$. We shall see that a consistent estimate for $(P_2 + P_3)/2$ is accessible though. Secondly, notice that the empirical eigenvalues of B_N are all inside the asymptotic clusters and, most importantly, in the case where cluster k_F is distinct from 1, $(k - 1)_F$ and $(k + 1)_F$, observe that the number of those eigenvalues in cluster k_F is exactly n_k. This fact is referred to as exact separation. The exact separation for the current model originates from a direct application of the exact separation for the sample covariance matrix proven in [20] and is provided here in Theorem 3. This is further discussed in the subsequent sections.

B. Condition for separability

In the following, we are interested in estimating consistently the power P_k for a given fixed $k \in \{1, \ldots, K\}$. We recall that consistency means here that, as all system dimensions grow large with finite asymptotic ratios, the difference $P_k - \hat{P}_k$ between the estimate \hat{P}_k of P_k and P_k itself converges to zero with probability one. As previously mentioned, we show by construction in Section IV that such an estimate is only achievable if the cluster mapped to P_k is disjoint from all other clusters. The purpose of the present section is to provide sufficient conditions for cluster separability.

To ensure that cluster k_F (associated to P_k in F) is distinct from cluster 1 (that associated to σ^2) and clusters i_F, $i \neq k$, (those associated to all other P_i), the assumption and for the rest of this article that the following conditions are fulfilled:

(i) k satisfies Assumption 1, given as follows

\begin{equation}
\sum_{r=1}^K \frac{1}{c_r} \left(\frac{P_r m_{G,F,F}}{(1 + P_r m_{G,F,F})^2} \right) < 1
\end{equation}

with $m_{G,1}, \ldots, m_{G,K}$ the K real solutions to the equation in m_G,

\begin{equation}
\sum_{r=1}^K \frac{1}{c_r} \left(\frac{P_r m_{G,F,F}}{(1 + P_r m_{G,F,F})^3} \right) = 1
\end{equation}

with the convention $m_{G,K+1} = 0$, and (ii) k satisfies Assumption 2 as follows,

\begin{equation}
\sum_{r=1}^K \frac{1}{c_r} \left(\frac{P_r m_{G,F,F}}{(1 + P_r m_{G,F,F})^2} \right) < c
\end{equation}

\begin{equation}
\sum_{r=1}^K \frac{1}{c_r} \left(\frac{P_r m_{G,F,F}}{(1 + P_r m_{G,F,F})^3} \right) < c
\end{equation}

where $x_{G,i}^-$, $x_{G,i}^+$, $i \in \{1, \ldots, K_G\}$ are defined by

\begin{equation}
x_{G,i}^- = -\frac{1}{m_{G,i}} + \frac{K}{\sum_{r=1} P_r c_r + 1 + P_r m_{G,i}}
\end{equation}

\begin{equation}
x_{G,i}^+ = -\frac{1}{m_{G,i}} + \frac{K}{\sum_{r=1} P_r c_r + 1 + P_r m_{G,i}}
\end{equation}
increasing order) of the equation in \(m_E \)

\[
\frac{1 - c_0}{c_0} (\sigma^2 m_E)^3 + \sum_{r=1}^{j-1} \frac{1}{c_r} (x_{G,r}^+ + \sigma^2)^3 m_E^3 + \sum_{r=j}^{K_0} \frac{1}{c_r} (x_{G,r}^+ + \sigma^2)^3 m_E^3 = c
\]

(29)

Although difficult to fathom at this point of the article, the above assumptions will be clarified in the subsequent sections. We give hereafter a short intuitive explanation of the role of every condition.

Assumption 1 is a necessary and sufficient condition for cluster \(k_G \), that we define as the cluster associated to \(P_k \) in \(G \) (the l.s.d. of \(HPH^H \)), to be distinct from the clusters \(k_G \neq (k - 1)_G \) and \(k_G \neq (k + 1)_G \), associated to \(P_{k-1} \) and \(P_{k+1} \) in \(G \). Note that we implicitly assume a unique mapping between the \(P_i \) and clusters in \(G \); this statement will be made more rigorous in subsequent sections. Assumption 1 only deals with the inner \(HPH^H \) covariance matrix properties and ensures specifically that the powers to be estimated differ sufficiently from one another. Note that, if \(P_1, \ldots, P_K \) are scaled by a common constant, then the solutions of (23) are scaled by the inverse of this constant; the separability condition is then a function of \(P_2/P_1, \ldots, P_K/P_1 \) and of the ratios \(c_1, \ldots, c_K \) only. In Figure 4, we depict the critical ratio \(c_0 \) above which Assumption 1 is satisfied for all \(k \), when \(K = 2 \) and \(c_1 = c_2 \), as a function of \(P_1/P_2 \), i.e. the critical ratio \(c_0 \) above which the two clusters associated to \(P_1 \) and \(P_2 \) in \(G \) are disjoint. Observe that, as \(P_1 \) gets close to \(P_2 \), \(c_0 \) increases exponentially; therefore, to be able to separate power values with ratio close to one, an extremely large number of sensors is required. In Figure 5, the case \(K = 3 \) is considered with \(c_1 = c_2 = c_3, c_0 = 10 \), and we let \(P_2/P_1 \) and \(P_3/P_2 \) vary; this situation corresponds to the scenarios previously depicted in Figures 2 and 3. Note that the triplet \((P_1, P_2, P_3) = (1, 3, 5) \) is slightly outside the region that satisfies Assumption 1, and then, for this \(c_0 \), not all the clusters of \(G \) (and therefore of \(F \)) are disjoint, as confirmed by Figure 3. As for the triplet \((1, 3, 10) \), it clearly lies inside the region that satisfies Assumption 1, which is sufficient to ensure the separability of the clusters in \(G \), but not enough though to ensure the separability of the clusters in \(F \).

Assumption 2 deals with the complete \(B_N \) matrix model. It is however a non-necessary but sufficient condition so that cluster \(k_F \), associated to \(P_k \) in \(F \), be distinct from clusters \((k - 1)_F \) (or \((k + 1)_F \) and 1 (cluster 1 being that attached to \(\sigma^2 \)). The exact necessary and sufficient condition will be stated further in the next sections; however, the latter is not exploitable as is, and Assumption 2 will be shown to be an appropriate substitute. Assumption 2 is concerned with the value of \(c \) necessary to avoid (i) cluster \(k_G \) (associated to \(P_k \)) in \(G \) to further spread on the clusters \(k_G - 1 \) and \(k_G + 1 \) associated to \(P_{k-1} \) and \(P_{k+1} \), and, more importantly, to avoid (ii) cluster 1 associated to \(\sigma^2 \) in \(F \) to merge with cluster \(k_F \). As shall become evident in the next sections, when \(\sigma^2 \) is large, the tendency is for the cluster associated to \(\sigma^2 \) to become large and spread over the clusters associated to \(P_1 \), then \(P_2 \) etc. To counter this effect, one must increase \(c \), i.e. take more signal samples. Figure 6 depicts the critical ratio \(c \) that satisfies Assumption 2 as a function of \(\sigma^2 \), in the case \(K = 3, (P_1, P_2, P_3) = (1, 3, 10), c_0 = 10, c_1 = c_2 = c_3 \). Notice that, in the case \(c = 10 \), below \(\sigma^2 \approx 1 \), it is possible to separate all clusters, which is compliant with Figure 2 where \(\sigma^2 = 0.1 \).

As a consequence, under the assumption (proved later) that our proposed method cannot perform consistent power estimation when the cluster separability conditions are not met, we have two first conclusions:

- if one desires to increase the sensitivity of the estimator, i.e. to be able to separate two sources of close transmit power, one needs to increase the number of sensors (by increasing \(c_0 \)),
- if one desires to detect and reliably estimate power sources in a noisy environment, one needs to increase the number of sensed samples (by increasing \(c \)).

In the subsequent section, we study the properties of the asymptotic spectrum of \(HPH^H \) and \(B_N \) in more details. These properties will lead to an explanation for Assumptions 1 and 2. Under those assumptions, we shall then derive our novel power estimator.

IV. Multi-source Power Inference

In this section, we prove our main result,

Theorem 2: Let \(B_N \in \mathbb{C}^{N \times N} \) be defined as in Theorem 1, and \(\lambda = (\lambda_1, \ldots, \lambda_N) \), \(\lambda_1 < \ldots < \lambda_N \), be the vector of the ordered eigenvalues of \(B_N \). Further assume that the limiting ratios \(c_0, c_1, \ldots, c_K, c \) and \(P \) are such that Assumptions 1 and 2 are fulfilled for some \(k \in \{1, \ldots, K\} \). Then, as \(N, n, M \) grow large, we have

\[
\hat{P}_k - P_k \xrightarrow{a.s.} 0
\]

(30)

where the estimate \(\hat{P}_k \) is given by

![Figure 4. Limiting ratio \(c_0 \) to ensure separability of \((P_1, P_2)\), \(P_1 \leq P_2 \), \(K = 2, c_1 = c_2 \).](image-url)
Fig. 5. Subset of (P_1, P_2, P_3) that fulfills Assumption 1 $K = 3$, $c_1 = c_2 = c_3$, for $c_0 = 10$, in crosshatched pattern.

Fig. 6. Limiting ratio c as a function of σ^2 to ensure consistent estimation of $P_1 = 1$, $P_2 = 3$ and $P_3 = 10$, $c_0 = 10$, $c_1 = c_2 = c_3$.

Fig. 7. $x_G(m_1)$ for m_1 real, P diagonal composed of three evenly weighted masses in 1, 3 and 10. Local extrema are marked in circles, inflexion points are marked in squares.

Fig. 8. $x_G(m_G)$ for m_G real, P diagonal composed of three evenly weighted masses in 1, 3 and 5. Local extrema are marked in circles, inflexion points are marked in squares.

The approach pursued to prove Theorem 2 relies strongly on the original idea of [14]. From Cauchy’s integration formula [21],

$$P_k = c_k \frac{1}{2\pi i} \oint_{C_k} \sum_{r=1}^{K} \frac{1}{c_r P_r - \omega} d\omega$$

(33)

for any negatively oriented contour $C_k \subset \mathbb{C}$, such that P_k is contained in the surface described by the contour, while for every $i \neq k$, P_i is outside this surface. The strategy is then the following: we first propose a convenient integration contour C_k which is parametrized by a functional of the Stieltjes transform $m_F(z)$ of the l.s.d. of B_N. Instead of evaluating P_k, we then evaluate the complex integral resulting from replacing the limiting $m_F(z)$ in (33) by its empirical counterpart $\hat{m}_F(z) = \frac{1}{N} \text{tr}(B_N - zI_N)^{-1}$. This new integral, whose value we name \hat{P}_k, is shown to be almost surely equal to P_k in the large N limit. It then suffices to evaluate \hat{P}_k, which is just a matter of residue calculus [21].
We start by determining the integration contour \mathcal{C}_k. For this, we first need to study the distributions G and F in more details.

A. Properties of G and F

Let us introduce the following result on the l.s.d. of sample covariance matrices, borrowed from [18]

Proposition 2: Let A_n be defined as in Proposition 1. Then the almost sure limiting Stieltjes transform $m_A(z)$ of the e.s.d. of A_n, $z \in \mathbb{C}^+$ admits a limit $m^*_{A}(x)$ when $z \to x \in \mathbb{R}^+$. If x is outside the support of A, then $m^*_{A}(x)$ is the only solution with positive imaginary part of the equation $x_A(m) = x$, with $x_A(m)$ defined, for $-1/m$ outside the support of T, as

$$x_A(m) = -\frac{1}{m} + \frac{1}{e} \int \frac{t}{1 + tm} dT(t),$$

while, if x is outside the support of A, $m^*_{A}(x)$ is the only solution m of $x_A(m) = x$ such that $x_A'(m) > 0$. Moreover, if for some $m \in \mathbb{R}$ such that $-1/m$ is outside the support of T, $x_A'(m) > 0$, then $x_A(m)$ is outside the support of A.

The immediate corollary of Proposition 2 is that the complementary of the support Suppr(A) of A is the set \{ $x_A(m)$ \} for $-1/m$ outside the support of T such that $x_A'(m) > 0$.

$$\text{Suppr}(A) = \mathbb{R} \setminus \{ x \mid \exists m \in \mathbb{R}, x = x_A(m), x_A'(m) > 0 \}.\quad(35)$$

1) Support of G: First consider the matrix HPH^H, and let the function $x_G(m_G)$ be defined, for scalars $m_G \in \mathbb{R}^+ \setminus \{-1/P_1, \ldots, -1/P_K\}$, by

$$x_G(m_G) = -\frac{1}{m_G} + \sum_{r=1}^{K} \frac{1}{c_r} \frac{P_r}{1 + P_r m_G}.$$

The function $x_G(m_G)$ is depicted in Figures 7 and 8, for the cases where $c_0 = 10$, $c_1 = c_2 = c_3$ and (P_1, P_2, P_3) equal respectively $(1, 3, 10)$ and $(1, 3, 5)$. As expected by Proposition 2, $x_G(m_G)$ is increasing for m_G such that $x_G(m_G)$ is outside the support of G. Note now that the function x_G presents asymptotes in the positions $-1/P_1, \ldots, -1/P_K$, \begin{align}
\lim_{m_G \downarrow (-1/P_1)} x_G(m_G) &= \infty \\
\lim_{m_G \downarrow (-1/P_K)} x_G(m_G) &= -\infty,
\end{align}

and that $x_G(m_G) \to 0^+$ as $m_G \to -\infty$. Note also that, on its restriction to the set where it is non-decreasing, x_G is increasing.\footnote{we say here that a function $f(x)$ is increasing if $x < x^* \Rightarrow f(x) > f(x^*) > 0$; if $x < x^* \Rightarrow f(x) - f(x^*) \geq 0$, we say that $f(x)$ is non-decreasing.} To prove this, let m_G and m_G^* be two distinct points such that $x_G(m_G) > 0$ and $x_G(m_G^*) > 0$, and $m_G < m_G^* < 0$, we indeed have,3

$$x_G(m_G) - x_G(m_G^*) = \frac{m_G - m_G^*}{m_G m_G^*} \times \left[1 - \sum_{r=1}^{K} \frac{1}{c_r} \left(P_r + \frac{P_r^2}{m_G} \right) \left(P_r + \frac{P_r^2}{m_G^*} \right) \right].$$

Noticing that, for $P_i > 0$,

$$0 < \left(\frac{P_i}{P_i + \frac{P_i^2}{m_G}} - \frac{P_i}{P_i + \frac{P_i^2}{m_G^*}} \right)^2 = \left(\frac{P_i^2}{(P_i + \frac{P_i^2}{m_G})^2} - \frac{P_i^2}{(P_i + \frac{P_i^2}{m_G^*})^2} \right) = 2 \left(\frac{P_i}{P_i + \frac{P_i^2}{m_G}} \right)^2 \left(\frac{P_i}{P_i + \frac{P_i^2}{m_G^*}} \right),$$

we have

$$\left(1 - \sum_{r=1}^{K} \frac{1}{c_r} \left(P_r + \frac{P_r^2}{m_G} \right) \right) \geq 0$$

$$x_G'(m_G) = \frac{1}{m_G^2} \left[1 - \sum_{r=1}^{K} \frac{1}{c_r} \left(P_r + \frac{P_r^2}{m_G} \right) \right] \geq 0,$$

we conclude that the term in brackets in (39) is positive and that $x_G(m_G) - x_G(m_G^*) > 0$. Hence x_G is increasing on its restriction to the set where it is non-decreasing.

Notice also that x_G, both in Figures 7 and 8, has exactly one inflexion point on each open set $(-1/P_i, -1/P_i)$, for $i \in \{1, \ldots, K\}$. This is proven by noticing that $x_G''(m_G) = 0$ is equivalent to

$$\sum_{r=1}^{K} \frac{1}{c_r} \frac{P_r^2}{(1 + P_r m_G)^3} - 1 = 0.$$

Now, the left-hand side of (45) has derivative along m_G;

$$\sum_{r=1}^{K} \frac{1}{c_r} \frac{P_r^2}{(1 + P_r m_G)^4},$$

\footnote{this proof is borrowed from the proof of [14], with different notations.}
which is always positive. Notice that the left-hand side of (45)
has asymptotes for $m_G = -1/P_i$ for all $i \in \{1, \ldots, K\}$, and has respective limits 0 as $m_G \to 0$ and $1/c_0 - 1$ as $m_G \to -\infty$. If $c_0 > 1$, Equation (45) (and then $x_{G}^i(m_G) = 0$) therefore has a unique solution in $(-1/P_i - 1, -1/P_i)$ for all $i \in \{1, \ldots, K\}$, with convention $P_0 = 0+$, when x_G is increasing somewhere on $(-1/P_i - 1, -1/P_i)$, the inflexion point in $(-1/P_i - 1, -1/P_i)$ is necessarily found in the region where x_G increases. If $c_0 \leq 1$, the leftmost inflexion point may not exist.

From the discussion above and Proposition 2, we conclude that the support of G is divided into $K_G \leq K$ compact subsets $[x_{G,i}^+, x_{G,i}^-]$, $i \in \{1, \ldots, K_G\}$. Also, if $c_0 > 1$, G has an additional mass in 0 of probability $G(0) - G(0-)$; this mass will not be counted as a cluster in G. Observe that every P_i can be uniquely mapped to a corresponding subset $[x_{G,i}^+, x_{G,i}^-]$ in the following fashion. The power P_i is mapped onto the first cluster in G; we then have $1_G = 1$. Then the power P_2 is either mapped onto the second cluster in G if x_G increases in the subset $(-1/P_1, -1/P_2)$, which is equivalent to saying that $x_G(m_G,2) > 0$ for $m_G,2$ the only solution to $x_G^i(m_G) = 0$ in $(-1/P_1, -1/P_2)$; in this case, we have $2_G = 2$. Otherwise, if $x_G(m_G,2) \leq 0$, P_2 is mapped onto the first cluster in F; in this case, $2_G = 1$. The latter scenario visually corresponds to the case when P_1 and P_2 engender “overlapping clusters”. More generally, $P_j, j \in \{1, \ldots, K_G\}$, is uniquely mapped onto the cluster j_G such that

$$j_G = \# \{ i \leq j \mid \min[x_G^i(m_G,i), x_G^i(m_G,i+1)] > 0 \},$$

with convention $m_{G,K+1} = 0$, which is exactly

$$j_G = \# \{ i \leq j \mid i \text{ satisfies Assumption 1} \},$$

when $c_0 > 1$. If $c_0 \leq 1$, the zero of x_G^i in $(-\infty, -1/P_1)$ may not exist. If $c_0 < 1$, we claim that P_1 cannot be evaluated (as was already observed in Remark 3). The special case when $c_0 = 1$ would require a restatement of Assumption 1 to handle the special case of P_1; this will however not be done, as it will turn out that Assumption 2 is violated for P_1 if $\sigma^2 > 0$, which we assume.

In the particular case of the power P_k of interest in Theorem 2, because of Assumption 1, $x_G(m_G,k) > 0$. Therefore the index K_G of the cluster associated to P_k in G satisfies $k_G = (k-1)G+1$ (with convention $0_G = 0$). Also, from Assumption 1, $x_G^i(m_G,k+1) > 0$. Therefore $(k+1)_G = k_G + 1$. In that case, we have that P_k is the only power mapped to cluster k_G in G, and then we have the required cluster separability condition.

2) Support of F: We now proceed to the study of F, the almost sure limit spectrum distribution of B_N. In the same way as in the previous section, we have that the support of F is fully determined by the function $x_F(m_F)$, defined for m_F real, outside the support of H, by

$$x_F(m_F) = -\frac{1}{m_F} + \frac{1 + c_0}{cc_0} \int \frac{t}{1 + tm_F} dH(t).$$

Figure 9 depicts the function x_F in the case of Figure 2, i.e. $K = 3, P_1 = 1, P_2 = 3, P_3 = 10, c_1 = c_2 = c_3 = 0, c_0 = 10, c = 10, \sigma^2 = 0.1$. Figure 9 has the peculiar behaviour that it does not have asymptotes as in Figure 7 where the population eigenvalue distribution was discrete. As a consequence, our previous derivations cannot be straightforwardly adapted to derive the spectrum separability condition. If $c_0 > 1$, note also, although it is not appearing in the abscissa range of Figure 9, that there exist asymptotes in the position $m_F = -1/\sigma^2$. This is due to the fact that $G(0) - G(0-)$, and therefore $H(\sigma^2) - H(\sigma^2-)$, is 0. We assume $c_0 > 1$ until further notice.

From Proposition 2, the support of F is complementary to the set of real nonnegative x such that $x = x_F(m_F)$ and $x_F^i(m_F) > 0$ for a certain real m_F, with $x_F^i(m_F)$ given by

$$x_F^i(m_F) = \frac{1}{m_F^2} - \frac{1 + c_0}{cc_0} \int \frac{t^2}{(1 + tm_F)^2} dH(t).$$

(50)

Reminding that $H(t) = \frac{c_0}{c_0+1}G(t-\sigma^2) + \frac{1}{1+c_0}\delta(t)$, this can be rewritten

$$x_F^i(m_F) = \frac{1}{m_F^2} - \frac{1}{c} \int \frac{t^2}{(1 + tm_F)^2} dG(t - \sigma^2).$$

(51)

It is still true that $x_F(m_F)$, restricted to the set of m_F where $x_F^i(m_F) \geq 0$, is increasing. As a consequence, it is still true also that every cluster of H can be mapped to a unique cluster in F. It is then possible to iteratively map the power P_k onto cluster k_F in G, as previously described, and to further map cluster k_F in G (which is also cluster k_G in H) onto a unique cluster k_F in F (or equivalently in F).

Therefore, a necessary and sufficient condition for the separability of the cluster associated to P_k in F reads

\begin{align*}
\text{Assumption 3: There exist two distinct real values} \\
\text{such that} \\
1) & \quad x_F^i(m_F^{(l)}) > 0, x_F^i(m_F^{(r)}) > 0 \\
2) & \quad \text{there exist } m_F^{(l)} < m_F^{(r)} \in \mathbb{R} \text{ such that } x_F^i(m_F^{(l)}) = -1/m_F^{(l)} - \sigma^2 \text{ and } x_F^i(m_F^{(r)}) = -1/m_F^{(r)} - \sigma^2 \text{ that satisfy} \\
& \quad \text{a) } x_F^i(m_F^{(l)}) > 0, x_F^i(m_F^{(r)}) > 0, \\
& \quad \text{b) and} \\
& \quad P_{k-1} < -\frac{1}{m_F^{(l)}} < P_k < -\frac{1}{m_F^{(r)}} < P_{k+1} \\
\end{align*}

(52)

with the convention $P_0 = 0+, P_{k+1} = \infty$.

Assumption 3 states (i) that cluster k_F in G is distinct from clusters $(k-1)_G$ and $(k+1)_G$ (Item 2b); this is another way of stating Assumption 1, and (ii) that the points $m_F^{(l)}$ and $m_F^{(r)}$ of x_F lie outside the support of F on either side of cluster k_F.

However, Assumption 3, be it a necessary and sufficient condition for the separability of cluster k_F, is difficult to exploit in practice. Indeed, it is not satisfactory to require the verification of the existence of such $m_F^{(l)}$ and $m_F^{(r)}$. More importantly, the computation of x_F requires to know H, which is only fully accessible through the non-convenient
inverse Stieltjes transform formula

\[H(x) = \frac{1}{\pi} \lim_{y \to 0} \int_{-\infty}^{x} m_H(t + iy) dt. \]

(53)

Instead of Assumption 3, we derive here a sufficient condition for cluster separability in \(F \). Notice from the clustering of \(G \) into \(K_G \) clusters plus a mass at zero that (51) becomes

\[x_F'(m) = \frac{1}{m} \left(1 - \frac{1}{m} \sum_{r=1}^{K_G} \int_{x_G,r}^{x_G,r+1} \frac{t^2}{(1 + tm)^2} dG(t - \sigma^2) \right) - \frac{c_0 - 1}{m} \left(1 + \sigma^2 m \right)^2, \]

(54)

\[\text{with } [x_G,i, x_G,i+1] \text{ the support of cluster } i \text{ in } G, \text{ i.e.} \]
\[x_{G,1}, x_{G,1}^+, \ldots, x_{G,K_G}, x_{G,K_G}^+ \text{ are the images by } x_G \text{ of the} \]
\[2K_G \text{ real solutions to } x_G'(m_G) = 0. \]

Observe now that the function \(-t^2/(1 + tm)^2\), found in the integrals of (54), has derivative along \(t \)

\[\left(-\frac{t^2}{(1 + tm)^2} \right)' = -2t \frac{1}{(1 + tm)^4}, \]

(55)

and is therefore strictly increasing when \(m_F < -1/t \) and strictly decreasing when \(m_F > -1/t \). For \(m_F \in (-1/(x_G,i + \sigma^2), -1/(x_G,i+1 + \sigma^2)) \), we then have the inequality

\[x_F'(m_F) \geq \frac{1}{m} \left(1 - \frac{1}{m} \sum_{r=1}^{K_G} \frac{(x_G,r + \sigma^2)^2}{(1 + x_G,r + \sigma^2 m_F)^2} \right) + \frac{c_0 - 1}{m} \left(1 + \sigma^2 m \right)^2, \]

(56)

Denote \(f_1(m_F) \) the right-hand side of (56). Through the inequality (56), we then fall back on a finite sum expression as in the previous study of the support of \(G \). In that case, we can exhibit a sufficient condition to ensure the separability of cluster \(k_F \) from the neighboring clusters. Specifically, we only need to verify that \(f_{k_F-1}(m_F,k_G) > 0 \), with \(m_F,k_G \) the single solution to \(f_{k_F-1}'(m_F) = 0 \) in the set \((-1/(x_G,k_G-1 + \sigma^2), -1/(x_G,k_G + \sigma^2))\), and \(f_{k_F}(m_F,k_G+1) > 0 \), with \(m_F,k_G+1 \) the unique solution to the inverse Stieltjes transform formula

\[\left(-\frac{t^2}{(1 + tm)^2} \right)' = -2t \frac{1}{(1 + tm)^4} \]

as the union of \(-1/\left(x_G,i - \sigma^2\right), -1/(x_G,i)) \) for \(i \in \{1, 2, 3\} \), and we take the convention \(m_{G,i} = -1/(15 + \sigma^2) \).

Recall now that \(P_k \) was defined as

\[P_k = c_k \frac{1}{2\pi i} \oint_{c_k} \frac{1}{\omega - \omega} d\omega. \]

(57)

With the variable change \(\omega = -1/m_G(t) \), this becomes

\[P_k = c_k \frac{1}{2\pi i} \oint_{c_k} \left(m_G(t) \left[-\frac{1}{m_G(t)} + \frac{1}{\sum_{r=1}^{K} P_r} \right] + \frac{\omega - \omega}{c_0} \right) \frac{m_G(t)}{m_G(t)^2} dt. \]

(58)

From Equation (13), this simplifies into

\[P_k = \frac{c_k}{c_0} \frac{1}{2\pi i} \oint_{c_k} \left(c_0 m_G(t) + (c_0 - 1) \right) \frac{m_G(t)}{m_G(t)^2} dt. \]

(59)

\[\text{we slightly abuse notations here and should instead say that the support of cluster } k_G \text{ in } H \text{ is inside the contour described by the image by } -1/m_F \text{ of the restriction to } \mathbb{C}^+ \text{ and } \mathbb{C}^- \text{ of } \mathcal{C}_F \text{, continuously extended to } \mathbb{R} \text{ in the points } -1/m_F(k_F) \text{ and } -1/m_F(k_F). \]
Using (17) and proceeding to the further change of variable $t = -1/m_F(z) - \sigma^2$, (59) becomes

$$P_k = \frac{c_k}{2\pi i} \oint_{C_{F,k}} \left[\left(\frac{1}{m_F(z)} + \sigma^2 \right) z m_F(z) + \frac{c_0 - 1}{c_0} \right] \times -\frac{m_F(z)m_F(z) - z m_F(z)m_F(z) - z m_F(z)m_F(z)}{z^2 m_F(z)^2 m_F(z)^2} dz \times \left[-\frac{1}{z m_F(z)} - \frac{m_F'(z)}{m_F(z) m_F(z)} \right] dz$$

(60)

This whole process of variable changes allowed us to describe P_k as a function of $m_F(z)$, the Stieltjes transform of the almost sure limiting spectral distribution of B_N, as $N \to \infty$. It then remains to exhibit a relation between P_k and the empirical spectral distribution of B_N for finite N. This is to what the subsequent section is dedicated to.

C. Evaluation of \hat{P}_k

Let us now define $\hat{m}_F(z)$ and $\hat{m}_E(z)$ as the Stieltjes transforms of the empirical eigenvalue distributions of B_N and \hat{B}_N, respectively, i.e.

$$\hat{m}_F(z) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{\lambda_i - z}$$

(62)

and

$$\hat{m}_E(z) = \frac{N}{M} \hat{m}_F(z) - \frac{M - N}{M} \frac{1}{z}.$$

(63)

Instead of going further with (60), define \hat{P}_k, the “empirical counterpart” of P_k, as

$$\hat{P}_k = \frac{n}{nk} \frac{1}{2\pi i} \oint_{C_{F,k}} \left[N \frac{(1 + \sigma^2\hat{m}_E(z)) + N - n}{n} \frac{1}{z\hat{m}_F(z)} \right] \times \left[-\frac{1}{z\hat{m}_F(z)} - \frac{\hat{m}_F'(z)}{\hat{m}_F(z)^2} - \frac{\hat{m}_E'(z)}{\hat{m}_E(z)\hat{m}_F(z)} \right] dz.$$

(64)

The integrand can then be expanded into nine terms, for which residue calculus [21] can easily be performed. Denote first η_1, \ldots, η_N the N real roots of $\hat{m}_F(z) = 0$ and μ_1, \ldots, μ_N the N real roots of $\hat{m}_E(z) = 0$. We identify three sets of possible poles for the nine aforementioned terms: (i) the set $\{\lambda_1, \ldots, \lambda_N\} \cap [x_{kF}^{(l)}, x_{kF}^{(r)}]$, (ii) the set $\{\eta_1, \ldots, \eta_N\} \cap [x_{kF}^{(l)}, x_{kF}^{(r)}]$ and (iii) the set $\{\mu_1, \ldots, \mu_N\} \cap [x_{kF}^{(l)}, x_{kF}^{(r)}]$. For $M \neq N$, the full calculus leads to

$$\hat{P}_k = \frac{NM}{nk(M - N)} \left[\sum_{1 \leq i \leq N} \eta_i - \sum_{1 \leq i \leq N} \mu_i \right]$$

$$+ \frac{N}{nk} \left[\sum_{1 \leq i \leq N} \sigma^2 - \sum_{1 \leq i \leq N} \sigma^2 \right]$$

$$+ \frac{N}{nk} \left[\sum_{1 \leq i \leq N} \sigma^2 - \sum_{1 \leq i \leq N} \sigma^2 \right].$$

(65)

Details are given in Appendix A. Now, we know from Theorem 1 that $\hat{m}_F(z) \overset{\sigma^2}{\to} m_F(z)$ and $\hat{m}_E(z) \overset{\sigma^2}{\to} m_E(z)$ as $N \to \infty$. Observing that the integrand in (64) is uniformly bounded on the compact $C_{F,k}$, the dominated convergence theorem [22] ensures $\hat{P}_k \overset{\sigma^2}{\to} P_k$.

To go further, we now need to determine which of $\lambda_1, \ldots, \lambda_N, \eta_1, \ldots, \eta_N$ and μ_1, \ldots, μ_N lie inside $C_{F,k}$. This requires a result of eigenvalue separation that extends the earlier results of [19], [20], as follows

Theorem 3: Let $B_n = (1/n)T_n^2 X_n X_n^T T_n^{-1} \in \mathbb{C}^{p \times p}$, where we assume the following conditions

1) $X_n \in \mathbb{C}^{p \times n}$ has entries x_{ij}, $1 \leq i \leq p$, $1 \leq j \leq n$, extracted from a doubly infinite array $\{x_{ij}\}$ of independent variables, with zero mean and unit variance.

2) There exist K and a random variable X with finite fourth order moment such that, for any $x > 0$,

$$\frac{1}{n_1 n_2} \sum_{i \leq n_1, j \leq n_2} P(|x_{ij}| > x) \leq KP(|X| > x)$$

(66)

for any n_1, n_2.

3) There is a positive function $\psi(x) \uparrow \infty$ as $x \to \infty$, and $M > 0$, such that

$$\max_{ij} E|x_{ij}| \psi(|x_{ij}|) \leq M.$$

(67)

4) $p = p(n)$ with $c_n = p/n \to c > 0$ as $n \to \infty$.

Fig. 10. Integration contours $C_{F,1}$, $C_{F,2}$ and $C_{F,3}$, for $c = 10$, $c_0 = 10$, $P_1 = 1$, $P_2 = 3$, $P_3 = 10$.

\[\text{Complex part of } C_{F,k}, k = 1, 2, 3.\]
For each \(n, T_n \in \mathbb{C}^{p \times p} \) is Hermitian nonnegative definite, independent of \(\{x_{ij}\} \), satisfying \(H_n \overset{\Delta}{=} FT_n \to H \), \(H \) a nonrandom probability distribution function, almost surely. \(T_n^2 \) is any Hermitian square root of \(T_n \).

6) The spectral norm \(\|T_n\| \) of \(T_n \) is uniformly bounded in \(n \) almost surely.

7) Let \(a, b > 0 \), nonrandom, be such that, with probability one, \([a, b]\) lies in an open interval outside the support of \(F^{x_n}H_n \) for all large \(n \), with \(F^{x_n}G \) defined to be the almost sure l.s.d. of \((1/n)X_n^*T_nX_n \) when \(H = G \) and \(c = y \).

Denote \(\lambda_1^X \geq \ldots \geq \lambda_p^X \) the ordered eigenvalues of the Hermitian matrix \(Y \in \mathbb{C}^{p \times p} \). Then, we have that

1) \(P(\text{no eigenvalues of } B_n \text{ appear in } [a, b] \text{ for all large } n) = 1 \).

2) If \(c(1 - H(0)) > 1 \), then \(x_0 \), the smallest value in the support of \(F^{c,H} \), is positive, and with probability one, \(\lambda_{B_n}^n \to 0 \) as \(n \to \infty \).

3) If \(c(1 - H(0)) \leq 1 \), or \(c(1 - H(0)) > 1 \) but \([a, b] \) is not contained in \([0, x_0]\), then \(m_{F^{c,H}}(a) < m_{F^{c,H}}(b) < 0 \). With probability one, there exists, for all \(n \) large, an index \(i_n \geq 0 \) such that \(\lambda_{i_n}^T_n > -1/m_{F^{c,H}}(a) \) and \(\lambda_{i_n+1}^T_n > -1/m_{F^{c,H}}(a) \) and we have

\[
P(\lambda_{B_n}^n > b \text{ and } \lambda_{B_n+1}^n < a \text{ for all large } n) = 1. \quad (68)
\]

Theorem 3 is proven in Appendix B.

To apply Theorem 3 to \(B_N \) in our scenario, we need to ensure all assumptions are met. Only Items 2-6 need particular attention. In our scenario, the matrix \(X_n \) of Theorem 3 is \((X_n \ W_n \ W_n^* \ X_n)\), while \(T_n \) is \(T = \begin{pmatrix} \mathbb{H}^{p^2} & \sigma^X \mathbb{1}_X \ 0 \ 0 \end{pmatrix} \). The latter has been proven to have almost sure l.s.d. \(H \), so that Item 5 is verified. Also, from the result of [19] upon which Theorem 3 is based, there exists a subset of probability one in the probability space that engenders the \(T \) over which, for \(n \) large enough, \(T \) has no eigenvalues in any closed set strictly inside the support of \(H \); this ensures Item 6. Now, from construction, \(X \) and \(W \) have independent entries of zero mean, unit variance, fourth order moment and are composed of at most \(K + 1 \) distinct distributions, irrespectively of \(M \). Denote \(X_1, \ldots, X_d, d \leq K + 1 \), \(d \) random variables distributed as those distinct distributions. Letting \(X = |X_1| + \ldots + |X_d| \), we have that

\[
\frac{1}{n_1 n_2} \sum_{i \leq n_1 \text{ and } j \leq n_2} P(|z_{ij}| > x) \leq \frac{1}{n_1 n_2} \sum_{i \leq n_1 \text{ and } j \leq n_2} P(|X_i| > x) = \frac{1}{n_1 n_2} \sum_{i \leq n_1 \text{ and } j \leq n_2} P(|X_j| > x),
\]

(69)

(70)

where \(z_{ij} \) is the \((i, j)\)'th entry of \((X_n \ W_n \ W_n^* \ X_n)\). Since all \(X_i \) have finite order four moments, so does \(X \) and Item 2 is verified. From the same argument, Item 3 follows with \(\phi(x) = x^2 \). Theorem 3 can then be applied to \(B_N \).

The corollary of Theorem 3 applied to \(B_N \) is that, with probability one, for \(N \) sufficiently large, there will be no eigenvalue of \(B_N \) (or \(B_N \)) outside the support of \(F \), and the number of eigenvalues inside cluster \(k \) is exactly \(n_k \). Since \(C_{F,k} \) encloses cluster \(k \) and is away from the other clusters, \(\{\lambda_1, \ldots, \lambda_N\} \cap [x_{k1}, x_{k2}] = \{\lambda_i, i \in N_k\} \) almost surely, for all \(N \) large. Also, for any \(i \in \{1, \ldots, N\} \), it is easy to see from (62) that \(\tilde{m}_F(z) \to \infty \) when \(z \uparrow \lambda_i \) and \(\tilde{m}_F(z) \to -\infty \) when \(z \downarrow \lambda_i \). Therefore \(\tilde{m}_F(0) \) has at least one solution in each interval \((\lambda_{i-1}, \lambda_i)\), with \(\lambda_0 = 0 \), hence \(\mu_1 < \lambda_1 < \mu_2 < \ldots < \mu_N < \lambda_N \). This implies that, if \(k_0 \) is the index such that \(C_{F,k} \) contains exactly \(\lambda_{k_0-1}, \ldots, \lambda_{k_0+(n_k-1)} \), then \(C_{F,k} \) also contains \([\mu_{k_0+1}, \ldots, \mu_{k_0+(n_k-1)}] \). The same result holds for \(\eta_{k_0+1}, \ldots, \eta_{k_0+(n_k-1)} \). If the indexes exist, due to cluster separability, \(\eta_{k_0-1} \) and \(\mu_{k_0-1} \) belong, for \(N \) large, to cluster \(k_F = 1 \). We are then left with determining whether \(\mu_{k_0} \) and \(\eta_{k_0} \) are asymptotically found inside \(C_{F,k} \).

For this, we use the same approach as in [14], by noticing that, since \(0 \) is not included in \(C_k \), one has

\[
\frac{1}{2\pi} \int_{C_k^n} \frac{1}{\omega} \, d\omega = 0. \quad (71)
\]

Performing the same changes of variables as above, we have that

\[
\int_{C_{F,k}} -\tilde{m}_F(z) \tilde{m}_F(z) - \lambda m_F(z) \tilde{m}_F(z) - \tilde{m}_F(z) \tilde{m}_F(z)^2 \, dz = 0. \quad (72)
\]

For \(N \) large, the dominated convergence theorem ensures again that the left-hand side of the (72) is close to

\[
\int_{C_{F,k}} -\tilde{m}_F(z) \tilde{m}_F(z) - \lambda m_F(z) \tilde{m}_F(z) - \tilde{m}_F(z) \tilde{m}_F(z)^2 \, dz = 0. \quad (73)
\]

Residue calculus of (73) then leads to

\[
\left[\sum_{1 \leq \lambda \leq N} 2 - \sum_{1 \leq \lambda \leq N} 1 - \sum_{1 \leq \mu \leq N} 1 \right] \frac{a_n}{\lambda - \mu} \to 0. \quad (74)
\]

Since the cardinalities of \(\{i, \eta_i \in [x_{k1}, x_{k2}]\} \) and \(\{i, \mu_i \in [x_{k1}, x_{k2}]\} \) are at most \(n_k \), (74) is satisfied only if both cardinalities equal \(n_k \) in the limit. As a consequence, \(\mu_{k_0} \in [x_{k1}, x_{k2}] \) and \(\eta_{k_0} \in [x_{k1}, x_{k2}] \). For \(N \) large, \(N \neq M \), this allows us to simplify (65) into

\[
\hat{P}_k = \frac{NM}{nk(M - N)} \sum_{1 \leq \lambda \leq N} \left(\frac{\eta_i - \mu_i}{\lambda_i - x} \right) \quad (75)
\]

with probability one. The same reasoning holds for \(M = N \). This is our final relation.

It now remains to show that the \(\eta_i \) and the \(\mu_i \) are the eigenvalues of \(\text{diag}(\lambda) - \frac{1}{M} \sqrt{X^\top X} \) and \(\text{diag}(\lambda) - \frac{1}{M} \sqrt{X^\top X} \) respectively. For this, we need the following lemma.

Lemma 1: Let \(A \in \mathbb{R}^{N \times N} \) be diagonal with entries \(\lambda_1, \ldots, \lambda_N \), and let \(y \in \mathbb{R}^N \). Then the eigenvalues of \(A - yy^H \) are the \(N \) real solutions of the following equation in \(x \),

\[
\sum_{i=1}^{N} \frac{y_i^2}{\lambda_i - x} = 1. \quad (76)
\]
Proof: Let λ be an eigenvalue of $A - yy^H$. For a certain non-zero vector $x \in \mathbb{C}^N$, we then have the equivalent relations

$$
(A - yy^H)x = \lambda x, \quad (A - \lambda I_N)x = y^Hxy, \quad x = y^H(A - \lambda I_N)^{-1}y, \quad y^Hx = y^Hxy^H(A - \lambda I_N)^{-1}y, \quad 1 = y^H(A - \lambda I_N)^{-1}y.
$$

Since A is diagonal, denoting $e_i \in \mathbb{C}^N$ the vector such that $e_{i,j} = \delta_{i,j}$, we finally have

$$
\sum_{i=1}^{N} \frac{(y^He_i)^2}{\lambda_i - \lambda} = 1.
$$

Applying Lemma 1 to $A = \text{diag} \lambda$ and $y = \sqrt{\frac{1}{N}}x$, we find that the eigenvalues of $\text{diag}(\lambda) - \frac{1}{N}\sqrt{X}x\sqrt{X}^T$ are the solutions of

$$
\sum_{i=1}^{N} \frac{1}{\lambda_i - x} = 1,
$$

which is equivalent to

$$
\frac{1}{N} \sum_{i=1}^{N} \frac{1}{\lambda_i - x} = 0,
$$

whose solutions are by definition η_1, \ldots, η_N. The same argument applies similarly to μ_1, \ldots, μ_N. Incidentally, this remark was already noticed in [23].

We end this section by a short discussion on the consequences of Theorem 2.

D. Discussion

Theorem 2 states that, under spectrum separability condition for all $P_k, k \in \{1, \ldots, K\}$, when n_1, \ldots, n_K are known a priori to the receiver, then $\hat{P}_1, \ldots, \hat{P}_K$ are consistent estimators for P_1, \ldots, P_K. Now, in practice, it is rare that n_1, \ldots, n_K and even K are known a priori to the receiver. However, if separability is assumed, then one can estimate simultaneously K, n_1, \ldots, n_K and P_1, \ldots, P_K. This is performed by (i) “visually” determining the clusters of the empirical eigenvalues of B_N (every gap in the empirical eigenvalue histogram characterizes a new cluster), which determines K, (ii) counting the number of eigenvalues in each cluster to determine the multiplicities n_1, \ldots, n_K and (iii) evaluating $\hat{P}_1, \ldots, \hat{P}_K$ from Theorem 2.

Now, if n_1, \ldots, n_K are unknown to the receiver, the latter can in reality only assume the cluster separability condition and hope it is valid. If the condition is in fact not met, say the empirical eigenvalues corresponding to the p values P_1, \ldots, P_{i+p-1} are merged into a single cluster, i.e. $i_F = \ldots = (i+p-1)F$, then applying the method described above leads to an estimator of their mean $\hat{P}_0 = \frac{1}{n_0} \sum_{k=0}^{p-1} P_{i+k}$ with $n_0 = n_i + \ldots + n_{i+p-1}$ (since the integration contour encloses all power values), instead of an estimator of their individual values. In this case, the receiver can therefore only say that a given estimate \hat{P}_0 obtained from Theorem 2 corresponds either to a single transmit source with dimension n_0 or to multiple transmit sources of cumulated dimension n_0 with average transmit power P_0, well approximated by \hat{P}_0. For practical blind detection purposes in cognitive radios, this leads the secondary network to infer a number of transmit entities that is less than the effective number of transmitters. In general, this would not have serious consequences on the decisions made by the secondary network but this might at least reduce the capabilities of the secondary network to optimally overlay the licensed spectrum. Further work is currently being investigated to go past the cluster separability assumption; specifically, methods for estimating the number of P_k’s associated to any cluster j_F are under study.

V. Simulations

We provide hereafter simulation results for the model presented in Figure 2, i.e. $K = 3, P_1 = 1, P_2 = 3, P_3 = 10, n_1/n = n_2/n = n_3/n = 1/10$ and $n/N = N/M = 1/10$. The SNR, defined as $\text{SNR} = 1/\sigma^2$, is 10 dB. In Figure 11, we present the simulation results both for $n = 60$ and $n = 6$, when the entries of X are QPSK-modulated and those of H and W are Gaussian distributed. These results are compared against a moment-based approach. The latter consists here in computing the first three moments of the empirical eigenvalue distribution of B_N, i.e. $\frac{1}{K} \text{tr} \left(\frac{1}{N} YY^H \right)^k$, for $k = 1, 2, 3$, from which the decomolved asymptotic moments $\frac{1}{K} \left(P_1^k + P_2^k + P_3^k \right)$ of $\frac{1}{K} PP^H$ can be evaluated, see e.g. [24]. These relations between moments can then be inverted using Newton-Girard polynomial formulas [25] to obtain estimates of P_1, P_2, P_3. We observe a particularly accurate fit between the empirical estimates $\hat{P}_1, \hat{P}_2, \hat{P}_3$ and the true P_1, P_2, P_3 in the case $n = 60$, while the case $n = 6$ at least demonstrates the robustness (and the apparent unbiasedness) of this Stieltjes transform based technique. In comparison, the moment-based approach estimates are less accurate, and more biased, especially for small n. Other approaches than Newton-Girard inversion, such as minimum mean square error estimates (assuming the asymptotic moments have central limit) [12] would give better results but at an extremely higher computational price.

The corresponding performance in terms of normalized mean square error (NMSE) of the joint vector estimate $\left(\hat{P}_1, \ldots, \hat{P}_K \right)$ of $\left(P_1, \ldots, P_K \right)$ is depicted in Figure 12 for different values of σ^2, in the cases $n = 6$ and $n = 60$. The NMSE is given by

$$
\text{NMSE} = E \left[\frac{1}{K} \sum_{k=1}^{K} \frac{(P_k - \hat{P}_k)^2}{P_k^2} \right],
$$

where the expectation is taken over the random realizations of the matrices H, X and W. Observe that a substantial gain in terms of NMSE is realized by the Stieltjes transform-based method for reasonable SNR values. In the low SNR regime, the plots corresponding to both the Stieltjes transform and the moment-based approach are somewhat meaningless, since (i) the Stieltjes transform approach is known not to

\footnote{Note also that sometimes the Newton-Girard formulas return purely complex roots, which were discarded here.}
be valid for SNR values that do not fulfill Assumption 2 (this translates into a steep increase of the NMSE below a given SNR value), and (ii) the moment-based approach often returns purely complex estimates for low SNR values, which are of no practical use. We mention that more computationally expensive methods based on moments were tested using four empirical moments and considering the joint covariance matrix of the first four moments. Although not presented here, these methods led to a rough 5 dB NMSE gain against the Newton-Girard approach at high SNR, at the expense of a huge computational complexity increase.

The NMSE of the individual estimates is depicted in Figure 13. Note how steep the mean square error curves increase below a given SNR value. This intuitively corresponds to the tipping point where the cluster separability assumption is no longer verified, i.e. Assumption 2 no longer holds. Now, remembering the results of Figure 6, observe that the horizontal line $c = 10$ crosses the respective curves of validity of Assumption 2 around the SNR values where Figure 13 shows steep curve increase. This somewhat validates the accuracy of Assumption 2, which we recall is only a sufficient condition for cluster separability. Note also importantly, and contrarily to classical MSE figures, that, as long as cluster separation is achieved, the performance of the Stieltjes transform algorithm is constant with respect to the SNR, and is only limited by the amplitude of the values of n, N and M.

We mention that additional simulations were run where the three symbol sources were not all QPSK modulated but had different distributions: QPSK, 16-QAM and 64-QAM were considered. The results in terms of NMSE are comparable but for a slight performance decay when large modulations are used (such as 64-QAM) along with not too large N and M.

VI. CONCLUSION

In this paper, a blind multi-source power estimator was derived. Under the assumptions that the ratio between the number of signal sources and the number of sensors is small and the source transmit powers are sufficiently distinct from one another, we derived a method to infer the number of transmit sources, the number of antennas of each source as well as their approximate transmit powers. Simulations showed that the performance achieved by this novel approach is extremely satisfactory compared to classical moment-based approaches, is computationally efficient and is particularly robust to small system dimensions. This method is particularly suited to the blind detection of licensed mobile user in future cognitive radio networks.

VII. ACKNOWLEDGMENT

Silverstein’s work is supported by the U.S. Army Research Office, Grant W911NF-09-1-0266. Bai’s work is supported by the NSF China, Grant 10871036, the NUS, Grant R-155-000-079-112 and R-155-000-096-646. Debbah’s work is supported by the European Commission, FP7 Network of Excellence in Wireless Communications NEWCOM++ and the French ANR Project SESAME.
Fig. 13. Normalized mean square error of individual powers P_1, P_2, P_3, $P_1 = 1$, $P_2 = 3$, $P_3 = 10$, $n_1/n = n_2/n = n_3/n = 1/3$, $n/N = N/M = 1/10$, $n = 6$, for 10,000 simulation runs.

APPENDIX A

RESIDUE CALCULUS

The integrand of \hat{P}_k in (64) can be expanded as

$$
\frac{N}{n} \frac{1}{z \hat{m}_F(z)} - \frac{N}{n} \frac{\hat{m}_F(z)}{\hat{m}_F(z)}^2 - \frac{N}{n} \frac{\hat{m}_F(z)}{\hat{m}_F(z)\hat{m}_F(z)}[\hat{m}_F(z) - \hat{m}_F(z)] - \frac{N}{n} \frac{\hat{m}_F(z)}{\hat{m}_F(z)^2\hat{m}_F(z)}[\hat{m}_F(z) - \hat{m}_F(z)] - \frac{N\sigma^2}{n} \frac{\hat{m}_F(z)}{\hat{m}_F(z)^2\hat{m}_F(z)} + \frac{N\sigma^2}{n} \frac{\hat{m}_F(z)}{\hat{m}_F(z)}
$$

(86)

First assume the case $M \neq N$. Numbering the nine terms in order, we have that (1) has poles in $z \in \{\eta_1, \ldots, \eta_N\}$, where $\hat{m}_F(z) = 0$. Applying l'Hospital's rule, all poles have order 1 and the corresponding residues are

$$
\lim_{z \to \eta} \frac{-N}{n} \frac{z - \eta}{z \hat{m}_F(z)} = -\frac{N}{n} \frac{1}{\eta \hat{m}_F'(\eta)}
$$

(87)

As for (2), it is the derivative of $-1/\hat{m}_F(z)$, which is well-behaved inside $\mathcal{C}_{F,k}$, so it does not have poles. The term (3) has poles of order 1 in $z \in \{\eta_1, \ldots, \eta_N\}$ as well and we have the residue

$$
\lim_{z \to \eta} \frac{-N}{n} \frac{z - \mu}{z \hat{m}_F(z)} = -\frac{N}{n} \frac{1}{\eta \hat{m}_F'(\eta)}
$$

(88)

the last equality being obtained from the fact that

$$
\hat{m}_F(\eta) = 0
$$

and $\hat{m}_F'(\eta) = 0$. It also has poles in $z \in \{\mu_1, \ldots, \mu_N\}$, where $\hat{m}_F(z) = 0$. These are order 1 poles and we have

$$
\lim_{z \to \mu} \frac{-N}{n} \frac{z - \mu}{z \hat{m}_F(z)} = -\frac{N}{n} \frac{1}{\mu \hat{m}_F'(\mu)}
$$

(89)

Term (4) is shown in a similar way to have residues

$$
-\frac{N-n}{N-M} \frac{1}{\eta \hat{m}_F'(\eta)} \text{ and } \frac{N-n}{M-N} \frac{1}{\mu \hat{m}_F'(\mu)}, i \in \{1, \ldots, N\}.
$$

Term (5) has residues $\frac{N-n}{n} \frac{N\sigma^2}{(M-N)\mu_k}, i \in \{1, \ldots, N\}$. Term (6) has residues $-\frac{N-n}{n} \frac{N\sigma^2}{(M-N)^2} \frac{1}{\mu_k \eta} \hat{m}_F'(\eta)$ and $\frac{N-n}{n} \frac{N\sigma^2}{M-N} \frac{1}{\mu_k \mu_k}$, $i \in \{1, \ldots, N\}$. Term (7) has a pole in $z = 0$ but we already know that 0 is not inside $\mathcal{C}_{F,k}$, so this is already discarded. Term (8) has poles in $z \in \{\lambda_1, \ldots, \lambda_N\}$ of residue $\frac{N\sigma^2}{n}$ and poles in $z \in \{\eta_1, \ldots, \eta_N\}$ of residue $-\frac{N\sigma^2}{n}$. Similarly term (9) has poles in $z \in \{\lambda_1, \ldots, \lambda_N\}$ of residue $-\frac{N\sigma^2}{n}$ and poles in $z \in \{\mu_1, \ldots, \mu_N\}$ of residue $-\frac{N\sigma^2}{n}$.

Summing together the 9 terms and remarking that

$$
\frac{N}{M-N} \hat{m}_F(z) = \frac{M}{M-N} \hat{m}_F(\frac{1}{z}) - \frac{1}{z^2}
$$

(91)

we obtain exactly (65).

Assume now $M = N$, in which case $\hat{m}_F(z) = \hat{m}_F(z)$. It can be readily seen that the terms (4) to (6) are the derivative of $-\frac{N-n}{n} \frac{1}{z \hat{m}_F(z)}$, so that they have residue 0. The only remaining term here is (1), whose residues are the $\frac{N}{n} \eta_i \hat{m}_F'(\eta_i)$.

APPENDIX B

PROOF OF EXACT SEPARATION

Theorem 3 is a generalization from the assumption of identical distribution of the x_{ij}’s, the proof of which is contained in the two papers [19] and [20], which, with some modifications, appear as Chapter 6 in [16]. The proof uses previous articles that need to be updated as well. We shall therefore go through the necessary steps that need to be modified, taking reference to all papers successively.

We shall assume for simplicity in the following that the matrices T_n are deterministic, converges in distribution to H and that $\|T_n\|$ is uniformly bounded. The generalization to random T_n follows from Tonelli’s theorem [22]. Indeed, let X be the probability space that engenders the X_n and T the probability space that engenders the T_n. Let A be any of the events in Conclusion 1, 2, or 3, claimed to occur with probability one. Assume that Theorem 3 holds for deterministic T_n satisfying Assumptions 5), 6), and 7). Let $t \in T$ be an element of the intersection of these events. Then $I_{A}(t, x) = 1$ for all x contained in a subset of X having probability one. Therefore, by Tonelli’s theorem, denoting $\mathcal{T} \times X$ the product space of T and X, we have that

$$
\int_{\mathcal{T} \times X} I_{A}(t, x)dP_{T \times X}(t, x) = \int_{\mathcal{T} \times X} I_{A}(t, x)dP_{X}(x) \cdot dP_{T}(t) = 1
$$

(92)

and Theorem 3 therefore holds true if it holds true for T_n deterministic.

A. Extension of [26]

The first step is to extend the work in [26] on the largest eigenvalue of $S_n = \frac{1}{n} X_n X_n^\top$, where $X_n = (x_{ij})$ is a $p \times n$, $p = p(n)$, and $p/n \to y > 0$ as $n \to \infty$. Checking the assumptions in [26], we change the six conditions of Page 518 to
(1) \(x_{ij}, i = 1, 2, \ldots, p; j = 1, 2, \ldots, n\) are independent for each \(n\),
(2) \(|x_{ij}| < \eta_n \sqrt{n}\), where \(\eta_n \downarrow 0\),
(3) \(E x_{ij} = 0\),
(4) \(E x_{ij}^2 \leq 1\),
(5) \(E x_{ij}^l \leq (\eta_n \sqrt{n})^{l-1}\), for \(l \geq 2\),
(6) \(E x_{ij} \leq c(\eta_n \sqrt{n})^{-l}\), for \(l \geq 3\).

By the same argument given there (no difference for complex random variables), the inequality
\[
E \text{tr}(S_n)^k \leq \eta^k
\]
holds for any \(\eta > b \equiv (1 + \sqrt{y})^2\) provided \(k\) is chosen such that
(a) \(k/\log n \to \infty\),
(b) \(\eta_n^k \to 0\).

This implies that \(P(\lambda_{\text{max}}(S_n) > b + \epsilon) = o(n^{-\epsilon})\) for any given \(\epsilon > 0\) and \(\epsilon > 0\).

Remark 4: Notice that if Condition (4) is replaced by \(E|x_{ij}^2| \leq \iota\), where \(\iota\) is a fixed positive constant, then we have
\[
P(\lambda_{\text{max}}(S_n) > \iota(b + \epsilon)) = o(n^{-\epsilon}),(94)
\]
We only need to consider the matrix \(\iota^{-1}S_n\) and replace \(x_{ij}\) by \(\iota^{-1/2}x_{ij}\) to verify the six conditions.

B. First step truncation and renormalization

We consider \(S_nT_n\), where the assumptions of Theorem 3 are met, except the \(T_n\) are assumed nonrandom. Here, to be consistent with Chapter 6 of [16], we replace \(c_n\) with \(y_n\) and \(c\) with \(y\).

Notice, from the identity
\[
EY^4 = \int_0^\infty P(Y > x^{1/4})dx,
\]
valid for any nonnegative random variable \(Y\), that (ii) implies the fourth moments of the \(x_{ij}\) exist.

We will need the following identity later on. For nonnegative \(Y\) having finite fourth moment, since \(EY^4(Y > y) \geq y^4 P(Y > y)\), we have \(y^4 P(Y > y) \to 0\) as \(y \to \infty\). Thus, using integration by parts, we have for any \(a > 0\)
\[
EY^4(Y > a) = a^4 P(Y > a) + \lim_{y \to \infty} (-y^4 P(Y > y) + \int_a^y 4x^3 P(Y > x)dx),
\]
valid for any nonnegative random variable \(Y\), that (ii) implies the fourth moments of the \(x_{ij}\) exist.

We choose \(\eta_n \downarrow 0\) such that \(\eta_n \sqrt{n} \uparrow \infty\), \(\liminf_n \eta_n^2 \sqrt{n} > 0\), and
\[
\sum_{k=1}^\infty 2^{2k} P(\|X\| > \tilde{\eta}_k 2^{k/2}) < \infty,
\]
where \(\tilde{\eta}_k = \eta_{2^k}\).

1. **Truncation.** Define \(y_{ij} = x_{ij} I(|x_{ij}| \leq \eta \sqrt{n})\), \(Y_n = (y_{ij})_{p \times n}\) and \(\tilde{S}_n = \frac{1}{n} Y_n Y_n^H\). We have
\[
P(X_n \neq Y_n, \text{ i.o.)}
\leq \lim_{m \to \infty} \sum_{k=m}^\infty \sum_{i=1}^n \left(P \left(\sum_{j=1}^n \{ |x_{ij}| > \eta_n \sqrt{n} \} \right) \right) \quad (99)
\]
\[
\leq \lim_{m \to \infty} \sum_{k=m}^\infty \left(P \left(\sum_{i=1}^n \{ |x_{ij}| > \eta_k 2^{k/2} \} \right) \right) \quad (100)
\]
\[
= \lim_{m \to \infty} \sum_{k=m}^\infty \left(P \left(\sum_{i=1}^n \{ |x_{ij}| > \eta_k 2^{k/2} \} \right) \right) \quad (101)
\]
\[
= 8yK \lim_{m \to \infty} \sum_{k=m}^\infty 2^{2k} P \left(|X| > \eta_k 2^{k/2} \right) = 0. \quad (102)
\]

2. **Centralization.** Define \(z_{ij} = y_{ij} - E y_{ij}\) and \(Z_n = (z_{ij})_{p \times n}\) and \(\tilde{\alpha}_n = (\tilde{S}_n)_{p \times n}\). Then by Theorem A. 46 of [16] and the above identity, we have
\[
\max_{k=p} |\lambda_k^\frac{1}{2}(\tilde{S}_n T_n) - \lambda_k^\frac{1}{2}(\tilde{\alpha}_n T_n)|
\leq \|T_n^\frac{1}{2}\| n^{-\frac{1}{2}} E(Y_n) \quad (103)
\]
\[
\leq \left(\frac{1}{n} \sum_{ij} E y_{ij}^2 \right)^\frac{1}{2} \quad (104)
\]
\[
= \left(\frac{1}{n} \sum_{ij} E x_{ij} I(|x_{ij}| > \eta \sqrt{n})^2 \right)^\frac{1}{2} \quad (105)
\]
\[
\leq \left(\frac{1}{\eta^2 n^3} \sum_{ij} E x_{ij} I(|x_{ij}| > \eta \sqrt{n}) \right)^\frac{1}{2} \quad (106)
\]
\[
\leq \left(\frac{K n p}{\eta^2 n^3} E X^4 I(|X| > \eta \sqrt{n}) \right)^\frac{1}{2} \to 0 \quad (107)
\]

3. **Rescaling.** Define \(w_{ij} = z_{ij}/\sigma_{ij}\), \(W_n = (w_{ij})_{p \times n}\) and \(\tilde{W}_n = \frac{1}{n} W_n W_n^H\). Then, by Theorem A. 46 of [16],
\[
\max_{ij} \left| \lambda_k^\frac{1}{2}(\tilde{S}_n T_n) - \lambda_k^\frac{1}{2}(\tilde{\alpha}_n T_n) \right|
\leq \|T_n^\frac{1}{2}\| n^{-\frac{1}{2}} (Z_n - W_n) \quad (108)
\]
\[
\leq \left[\frac{1}{\sqrt{n}} \left(z_{ij}(1 - \lambda_k^{-1}) \right) \right] \to 0, \text{ a.s.} \quad (109)
\]
because of (94) and the fact that
\[
\max_{ij} \left| 1 - \lambda_k^2 \right| \leq \max_{ij} \left| E x_{ij}^2 I(|x_{ij}| > \eta \sqrt{n}) + E x_{ij} I(|x_{ij}| > \eta \sqrt{n})^2 \right| \quad (110)
\]
\[
\leq 2 \psi^{-1}(\eta \sqrt{n}) \max_{ij} E |x_{ij}|^2 |\psi(|x_{ij}|) \to 0 \quad (111)
\]
which implies that
\[
\max_{ij} E |w_{ij} - z_{ij}|^2 = \max_{ij} \left(\frac{1 - \lambda_k^2}{(1 + \lambda_k^{-1})^2} \right) \to 0. \quad (113)
\]
C. Second truncation and normalization

We may assume now that the \(x_{ij} \) satisfy the six conditions of Section B-A with Condition (4) strengthened to \(E[x_{ij}^2] = 1 \) for all \(i, j \).

Define \(y_{ij} = x_{ij}I(|x_{ij}| \leq C) - Ex_{ij}I(|x_{ij}| > C) \) for some large constant \(C \) and define \(Y_n = (y_{ij})_{p \times n}, \hat{S}_n = \frac{1}{n} Y_n Y_n^H \).

Then by Theorem A. 46 of [16], we have
\[
\max_{k \leq p} |\lambda_k^2(\hat{S}_n T_n) - \lambda_k^2(\hat{S}_n T_n)| \\
\leq \|T_n\| \left\| n^{-1/2}(X_n - Y_n) \right\| \\
\leq \left\| n^{-1/2}(X_n - Y_n) \right\|. \tag{114}
\]

Since \(E|x_{ij} - y_{ij}|^2 \leq E|x_{ij}^2|I(|x_{ij}| > C) \leq M/\psi(C) \), this can be made arbitrarily small by making \(C \) sufficiently large. We can then apply (94).

The rescaling is the same as given in last Section. Now we have
\[
\max_{ij} |1 - \sigma_{ij}^2| \leq 2\psi^{-1}(C) \max_{ij} E|x_{ij}^2|/\psi(x_{ij}) \tag{116},
\]
which can be made arbitrarily small by making \(C \) sufficiently large.

D. Extension of [27] and Chapter 6 of [16]

The result in [27] on the smallest eigenvalue, \(\lambda_{\min}(S_n) \), of \(S_n \) can be extended with only Assumptions 1), 2), 3) of Theorem 3. Indeed, using the two step truncations, we may assume the \(x_{ij} \) are bounded, with mean 0 and variance 1. Following the same steps as in [27], one may prove that when \(y < 1 \)
\[
\lambda_{\min}(S_n) \rightarrow (1 - \sqrt{y})^2, \tag{117}
\]
amost surely.

We proceed now to the necessary changes in Chapter 6 in [16]. We may now assume the same conditions as in Section 6.2.1 of [16] on the \(x_{ij} \) (except they need not be identically distributed), and the bounds appearing there. The changes are needed wherever identical distribution was exploited.

We begin with Page 139, below (6.2.34). We change the definition of \(b_n \) to
\[
b_n = \frac{1}{1 + n^{-1}E \text{tr}(T_n D^{-1})}, \tag{118}
\]
and introduce the quantities
\[
b_nj = \frac{1}{1 + n^{-1}E \text{tr}(T_n D_j^{-1})}. \tag{119}
\]

The argument below (6.2.35) is specific for \(j = 1 \), but easily extends for any \(j \). Following the argument below (6.2.36), we cannot longer assume \(E[\beta_1] = -zE_{\gamma_n} \), nor is bounded, but we have
\[
\sup_{u \in [a,b]} \left| \frac{1}{n} \sum_k E[\beta_k] \right| \leq K. \tag{120}
\]
We further have
\[
b_{nk} = \beta_k + \beta_k b_{nk} \gamma_k. \tag{121}
\]
Then, using (6.2.36)
\[
\frac{1}{n} \sum_k (b_{nk} - E[\beta_k]) \leq Kn^{-1} \sum_k n^{-1}E[|\gamma_k|^2] \frac{1}{\hat{k}} \leq n^{-3} n^{-\frac{1}{2}}. \tag{122}
\]
Since \(b_{nj} - b_n = b_n b_{nj} E \left(\frac{1}{n} \text{tr}(D^{-1} - D_j^{-1}) \right) \), we have, using Lemma 6.9 of [16]
\[
b_n - \frac{1}{n} \sum_k b_{nk} \leq \frac{1}{n} \sum_k (b_n - b_{nk}) \leq |z|^2 \frac{1}{n\nu v^2}, \tag{124}
\]
and
\[
b_{nk} - b_n \leq K \frac{1}{n\nu v^3}. \tag{125}
\]
Thus we have
\[
\max_j \sup_{u \in [a,b]} |b_{nj}| \leq K. \tag{126}
\]

For the rest of Section 6.2.3, \(b_n \) is mentioned twice. We need to replace it with \(b_{nj} \) and the arguments go through without any further changes.

For Section 6.2.4, (6.2.42) needs to be replaced by
\[
y_n \int \frac{dH_n(t)}{1 + tE_{\gamma_n}} + zy_n E(s_n(z)) \tag{127}
\]
\[
= \frac{1}{n} \sum_{k=1}^n E[\beta_k] T_k H D_k^{-1} (E_{\gamma_n} T_n + I)^{-1} r_k \tag{128}
\]
\[
- E \text{tr}(E_{\gamma_n} T_n + I)^{-1} T_n D^{-1}. \tag{129}
\]

For the rest of the section, replace subscript 1 with subscript \(k \), subscript 2 with subscript \(j \), replace \(b_{1n} \) with
\[
b_{kj} = \frac{1}{1 + n^{-1}E \text{tr}(T_n D_j^{-1})}, \tag{130}
\]
and all appearances of subscripts \(kj \) assume \(k \neq j \). \(F_{nkj} \) has the obvious definition. Replace the summations for \(j \) ranging from 2 to \(n \) with \(j \neq k \). All the bounds derived for \(k = 1 \) are true for all \(k \). So we conclude the left side of (6.2.42) is bounded by \(kn^{-1} \).

The rest of Chapter 6 follows without any changes.

REFERENCES

Source Signal Detection,” IEEE Trans. on Signal Processing, under
review, 2010.

the Number of Signals Using the Benjamini-Hochberg Procedure,” IEEE

of large dimensional random matrices,” IEEE Trans. on Signal Processing,

6, pp. 2850-2885, 2008.

detection”, PIMRC 2008, Cannes, France.

[14] X. Mestre, “Improved estimation of eigenvalues and eigenvectors of
covariance matrices using their sample estimates,” IEEE trans. on Infor-

of a class of large dimensional random matrices,” Journal of Multivariate

[16] Z. Bai, J. W. Silverstein, Spectral Analysis of Large Dimensional

of large dimensional random matrices” Journal of Multivariate Analysis,

[19] Z. D. Bai, J. W. Silverstein, “No eigenvalues outside the support of
the limiting spectral distribution of large dimensional random matrices,”

dimensional sample covariance matrices” Annals of Probability, vol. 27,

1995.

[23] D. Gregoratti, X. Mestre, “Random DS/CDMA for the amplify and
8, no. 2, pp. 10171027, 2009.

2000

eigenvalue of the large dimensional sample covariance matrix,” Probabil-

[27] Z. D. Bai, Y. Q. Yin, “Limit of the smallest eigenvalue of a large