The Linear Algebra Aspects of PageRank

Ilse Ipsen

Thanks to Teresa Selee and Rebecca Wills
More PageRank More Visitors
Two Factors

Determine where Google displays a web page on the Search Engine Results Page:

1. **PageRank (links)**
 - A page has high PageRank if many pages with high PageRank link to it

2. **Hypertext Analysis (page contents)**
 - Text, fonts, subdivisions, location of words, contents of neighbouring pages
PageRank

An objective measure of the citation importance of a web page
[Brin & Page 1998]

- Assigns a rank to every web page
- Influences the order in which Google displays search results
- Based on link structure of the web graph
- Does not depend on contents of web pages
- Does not depend on query
PageRank

... continues to provide the basis for all of our web search tools http://www.google.com/technology/

- “Links are the currency of the web”
- Exchanging & buying of links
- BO (backlink obsession)
- Search engine optimization
Overview

- Mathematical Model of Internet
- Computation of PageRank
- Sensitivity of PageRank to Rounding Errors
- Addition & Deletion of Links
- Web Pages that have no Outlinks
- Is the Ranking Correct?
Mathematical Model of Internet

1. Represent internet as graph
2. Represent graph as stochastic matrix
3. Make stochastic matrix more convenient \Rightarrow Google matrix
4. dominant eigenvector of Google matrix \Rightarrow PageRank
The Internet as a Graph

Link from one web page to another web page

Web graph:
Web pages = nodes
Links = edges
The Web Graph as a Matrix

Let $S = \begin{pmatrix} 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}$.

Links = nonzero elements in matrix
Elements of Matrix S

Assume: every page i has $l_i \geq 1$ outlinks

If page i has link to page j then $s_{ij} = 1/l_i$
else $s_{ij} = 0$

Probability that surfer moves from page i to page j
Properties of Matrix S

- Stochastic: $0 \leq s_{ij} \leq 1, \quad S\mathbf{1} = \mathbf{1}$
- Dominant left eigenvector:
 $$\omega^T S = \omega^T \quad \omega \geq 0 \quad \|\omega\|_1 = 1$$
- ω_i is probability that surfer visits page i

But: ω not unique
if S has several eigenvalues equal to 1

Remedy: Make the matrix more convenient
Google Matrix

Convex combination

\[G = \alpha S + (1 - \alpha) \mathbf{1} \mathbf{1}^T \]

- Stochastic matrix \(S \)
- Damping factor \(0 \leq \alpha < 1 \)
 - e.g. \(\alpha = .85 \)
- Column vector of all ones \(\mathbf{1} \)
- Personalization vector \(\mathbf{v} \geq 0 \)
 - \(\|\mathbf{v}\|_1 = 1 \)
Models teleportation
Properties of Google Matrix G

$$G = \alpha S + (1 - \alpha) \mathbb{I} v^T$$

- Stochastic, reducible
- Eigenvalues of G:
 $$1 > \alpha \lambda_2(S) \geq \alpha \lambda_3(S) \geq \ldots$$
- Unique dominant left eigenvector:
 $$\pi^T G = \pi^T \quad \pi \geq 0 \quad \|\pi\|_1 = 1$$
PageRank

Google Matrix

\[G = \alpha S + (1 - \alpha) \mathbb{1} \mathbb{1}^T \]

Links \hspace{1cm} Personalization

\[\pi^T G = \pi^T \hspace{1cm} \pi \geq 0 \hspace{1cm} \|\pi\|_1 = 1 \]

\(\pi_i \) is PageRank of web page \(i \)

PageRank \(\Rightarrow \) dominant left eigenvector of \(G \)
How Google Ranks Web Pages

- **Model:**
 Internet \rightarrow web graph \rightarrow stochastic matrix G

- **Computation:**
 PageRank π is eigenvector of G
 π_i is PageRank of page i

- **Display:**
 If $\pi_i > \pi_k$ then page i may* be displayed before page k

 * depending on hypertext analysis
History

- The anatomy of a large-scale hypertextual web search engine
 Brin & Page 1998
- US patent for PageRank granted in 2001
- Eigenstructure of the Google Matrix
 Haveliwala & Kamvar 2003
 Eldén 2003
 Serra-Capizzano 2005
Statistics

- Google indexes *10s of billions of web pages*
- “3 times more than any competitor”
- Google serves ≥ 200 million queries per day
- Each query processed by ≥ 1000 machines
- All search engines combined serve a total of ≥ 500 million queries per day

[Desikan, 26 October 2006]
Computation of PageRank

The world’s largest matrix computation
[Moler 2002]

- Eigenvector
- Matrix dimension is 10s of billions
- The matrix changes often
 250,000 new domain names every day
- **Fortunately:** Matrix is sparse
Power Method

Want: \(\pi \) such that \(\pi^T G = \pi^T \)

Power method:

Pick an initial guess \(\mathbf{x}^{(0)} \)
Repeat

\[
[\mathbf{x}^{(k+1)}]^T := [\mathbf{x}^{(k)}]^T G
\]

Each iteration is a matrix vector multiply
Matrix Vector Multiply

\[x^T G = x^T \left[\alpha S + (1 - \alpha) \mathbb{1} v^T \right] \]
An Iteration is Cheap

Google matrix \(G = \alpha S + (1 - \alpha) \mathbf{1} \mathbf{1}^T \mathbf{v}^T \)

Vector \(x \geq 0 \quad \| x \|_1 = 1 \)

\[
x^T G = x^T \left[\alpha S + (1 - \alpha) \mathbf{1} \mathbf{1}^T \mathbf{v}^T \right] \\
= \alpha x^T S + (1 - \alpha) x^T \mathbf{1} \mathbf{1}^T \mathbf{v}^T \\
= \alpha x^T S + (1 - \alpha) \mathbf{v}^T
\]

Cost: # non-zero elements in \(S \)
Error in Power Method

\[\pi^T G = \pi^T \quad G = \alpha S + (1 - \alpha) \|v\|^T \]

\[
[x^{(k+1)} - \pi]^T = [x^{(k)}]^T G - \pi^T G
= \alpha [x^{(k)}]^T S - \alpha \pi^T S
= \alpha [x^{(k)} - \pi]^T S
\]

\[
\underbrace{\|x^{(k+1)} - \pi\|}_{\text{iteration } k+1} \leq \alpha \underbrace{\|x^{(k)} - \pi\|}_{\text{iteration } k}
\]

Norms: 1, \infty
Error in Power Method

\[\pi^T G = \pi^T \quad G = \alpha S + (1 - \alpha) \mathbb{1} v^T \]

Error after \(k \) iterations:

\[\|x^{(k)} - \pi\| \leq \alpha^k \|x^{(0)} - \pi\| \leq 2 \]

Norms: 1, \(\infty \)
[Bianchini, Gori & Scarselli 2003]

Error bound does not depend on matrix dimension
Iteration Counts for Different α

bound: k such that $2 \alpha^k \leq 10^{-8}$

Termination based on residual norms vs bound

<table>
<thead>
<tr>
<th>α</th>
<th>$n = 281903$</th>
<th>$n = 683446$</th>
<th>bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>.85</td>
<td>69</td>
<td>65</td>
<td>119</td>
</tr>
<tr>
<td>.90</td>
<td>107</td>
<td>102</td>
<td>166</td>
</tr>
<tr>
<td>.95</td>
<td>219</td>
<td>220</td>
<td>415</td>
</tr>
<tr>
<td>.99</td>
<td>1114</td>
<td>1208</td>
<td>2075</td>
</tr>
</tbody>
</table>

Fewer iterations than predicted by bound
Advantages of Power Method

- Converges to unique vector
- Convergence rate α
- Convergence independent of matrix dimension
- Vectorizes
- Storage for only a single vector
- Sparse matrix operations
- Accurate (no subtractions)
- Simple (few decisions)

But: can be slow
PageRank Computation

- **Power method**
 - Page, Brin, Motwani & Winograd 1999
 - Bianchini, Gori & Scarselli 2003

- **Acceleration of power method**
 - Kamvar, Haveliwala, Manning & Golub 2003
 - Haveliwala, Kamvar, Klein, Manning & Golub 2003
 - Brezinski, Redivo-Zaglia & Serra-Capizzano 2005

- **Aggregation/Disaggregation**
 - Ipsen & Kirkland 2006
PageRank Computation

- **Methods that adapt to web graph**
 Broder, Lempel, Maghoul & Pedersen 2004
 Kamvar, Haveliwala & Golub 2004
 Haveliwala, Kamvar, Manning & Golub 2003
 Lee, Golub & Zenios 2003
 Lu, Zhang, Xi, Chen, Liu, Lyu & Ma 2004
 Ipsen & Selee 2006

- **Krylov methods**
 Golub & Greif 2004
 Del Corso, Gullí, Romani 2006
PageRank Computation

- **Schwarz & asynchronous methods**
 Bru, Pedroche & Szyld 2005
 Kollias, Gallopoulos & Szyld 2006

- **Linear system solution**
 Arasu, Novak, Tomkins & Tomlin 2002
 Arasu, Novak & Tomkins 2003
 Bianchini, Gori & Scarselli 2003
 Gleich, Zukov & Berkin 2004
 Del Corso, Gullí & Romani 2004
 Langville & Meyer 2006
PageRank Computation

- Surveys of numerical methods:
 Langville & Meyer 2004
 Berkhin 2005
 Langville & Meyer 2006 (book)
Sensitivity of PageRank

How sensitive is PageRank π to small perturbations, e.g. rounding errors

- Changes in matrix S
- Changes in damping factor α
- Changes in personalization vector ν
Perturbation Theory

For Markov chains

Schweizer 1968, Meyer 1980
Haviv & van Heyden 1984
Funderlic & Meyer 1986
Golub & Meyer 1986
Seneta 1988, 1991
Ipsen & Meyer 1994
Kirkland, Neumann & Shader 1998
Cho & Meyer 2000, 2001
Kirkland 2003, 2004
Perturbation Theory

For Google matrix

Chien, Dwork, Kumar & Sivakumar 2001
Ng, Zheng & Jordan 2001
Bianchini, Gori & Scarselli 2003
Boldi, Santini & Vigna 2004, 2005
Langville & Meyer 2004
Golub & Greif 2004
Kirkland 2005, 2006
Chien, Dwork, Kumar, Simon & Sivakumar 2005
Avrechenkov & Litvak 2006
Changes in the Matrix \(S \)

Exact:

\[
\pi^T G = \pi^T \quad G = \alpha S + (1 - \alpha) \mathbf{1} v^T
\]

Perturbed:

\[
\tilde{\pi}^T \tilde{G} = \tilde{\pi}^T \quad \tilde{G} = \alpha (S + E) + (1 - \alpha) \mathbf{1} v^T
\]

Error:

\[
\tilde{\pi}^T - \pi^T = \alpha \tilde{\pi}^T E (I - \alpha S)^{-1}
\]

\[
\|\tilde{\pi} - \pi\|_1 \leq \frac{\alpha}{1 - \alpha} \|E\|_\infty
\]
Changes in α and ν

• Change in amplification factor:

$$\tilde{G} = (\alpha + \mu)S + (1 - (\alpha + \mu)) \mathbb{1} v^T$$

Error: $\|\tilde{\pi} - \pi\|_1 \leq \frac{2}{1-\alpha} |\mu|$

[Langville & Meyer 2004]

• Change in personalization vector:

$$\tilde{G} = \alpha S + (1 - \alpha) \mathbb{1} (\nu + f)^T$$

Error: $\|\tilde{\pi} - \pi\|_1 \leq \|f\|_1$
Sensitivity of PageRank π

$$\pi^T G = \pi^T \quad G = \alpha S + (1 - \alpha) \mathbf{1} v^T$$

Changes in

- S: condition number $\alpha/(1 - \alpha)$
- α: condition number $2/(1 - \alpha)$
- v: condition number 1

$\alpha = .85$: condition numbers ≤ 14
$\alpha = .99$: condition numbers ≤ 200

PageRank insensitive to rounding errors
Adding an In-Link

Adding an in-link increases PageRank (monotonicity)

Removing an in-link decreases PageRank

[Chien, Dwork, Kumar & Sivakumar 2001]
[Chien, Dwork, Kumar, Simon & Sivakumar 2005]
Adding an Out-Link

\[\tilde{\pi}_3 = \frac{1 + \alpha + \alpha^2}{3(1 + \alpha + \alpha^2/2)} < \pi_3 = \frac{1 + \alpha + \alpha^2}{3(1 + \alpha)} \]

Adding an out-link may decrease PageRank
Justification for TrustRank

Adjust personalization vector to combat web spam
[Gyöngyi, Garcia-Molina, Pedersen 2004]

Increase v for page i: $v_i := v_i + \phi$
Decrease v for page j: $v_j := v_j - \phi$

PageRank of page i increases: $\tilde{\pi}_i > \pi_i$
PageRank of page j decreases: $\tilde{\pi}_j < \pi_j$

Total change in PageRank $\|\tilde{\pi} - \pi\|_1 \leq 2\phi$
Web Pages that have no Outlinks

- Technical term: Dangling Nodes
- Examples:
 - Image files
 - PDF and PS files
 - Pages whose links have not yet been crawled
 - Protected web pages
- 50%-80% of all web pages
- Problem: zero rows in matrix
- Popular fix: Insert artificial links
Dangling Node Fix

\[
\begin{bmatrix}
0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
w_1 & w_2 & w_3 & w_4
\end{bmatrix}
\]
Inside the Stochastic Matrix S

Number pages so that dangling nodes are last

$$S = \begin{pmatrix} H \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ \mathbf{1} w^T \end{pmatrix}$$

Links from nondangling nodes: H

Dangling node vector $w \geq 0$ $\|w\|_1 = 1$

Google matrix $G = \alpha \begin{pmatrix} H \\ \mathbf{1} w^T \end{pmatrix} + (1 - \alpha) \mathbf{1} \mathbf{v}^T$
Partitioning the Google Matrix

\[G = \begin{pmatrix} G_{11} & G_{12} \\ 11 u_1^T & 11 u_2^T \end{pmatrix} \]

\[(u_1^T, u_2^T) = \alpha \omega^T + (1 - \alpha) v^T \]

- **dangling nodes**
- **personalization**
Lumping

Separate dangling and non-dangling nodes.
“Lump” all dangling nodes into single node.

- **Stochastic matrices:**
 - Kemeny & Snell 1960
 - Dayar & Stewart 1997
 - Jernigan & Baran 2003
 - Gurvits & Ledoux 2005

- **Google matrix:**
 - Lee, Golub & Zenios 2003
 - Ipsen & Selee 2006
Example

→: real links
→: artificial links
Lumped Example
Google Lumping

1. “Lump” all dangling nodes into a single node
2. Compute dominant eigenvector of smaller, lumped matrix
 \[\Rightarrow \text{PageRank of nondangling nodes} \]
3. Determine PageRank of dangling nodes with one matrix vector multiply
1. Lump Dangling Nodes

Google Matrix G

Lumped matrix L
1. Lump Dangling Nodes

\[G = \begin{pmatrix} G_{11} & G_{12} \\ \mathbb{1} u_1^T & \mathbb{1} u_2^T \end{pmatrix} \]

Lump \(n - d \) dangling nodes into a single node

\[L = \begin{pmatrix} \mathbb{1} & \mathbb{1} \\ \mathbb{1} u_1^T & \mathbb{1} u_2^T \end{pmatrix} \]

Stochastic, same nonzero eigenvalues as \(G \)
2. Eigenvector of Lumped Matrix

\[L = \begin{pmatrix} G_{11} & G_{12} \\ u_1^T & u_2^T \end{pmatrix} \]

Lumped matrix with \(d \) nondangling nodes

Compute eigenvector of lumped matrix

\[\sigma^T L = \sigma^T \quad \sigma \geq 0 \quad \|\sigma\|_1 = 1 \]

PageRank of nondangling nodes: \(\sigma_{1:d} \)
3. Dangling Nodes

\[G = \begin{pmatrix} G_{11} & G_{12} \\ 11 u_1^T & 11 u_2^T \end{pmatrix} \quad L = \begin{pmatrix} G_{11} & G_{12} 11 \\ u_1^T & u_2^T 11 \end{pmatrix} \]

Eigenvector of lumped matrix: \(\sigma^T L = \sigma^T \)

PageRank of dangling nodes:

\[\sigma^T \begin{pmatrix} G_{12} \\ u_2^T \end{pmatrix} \]

One matrix vector multiply
Summary: Dangling Nodes

n web pages with $n - d$ dangling nodes

- PageRank $\sigma_{1:d}$ of d nondangling nodes: from lumped matrix L of dimension $d + 1$
- PageRank of dangling nodes: one matrix vector multiply
- Total PageRank

$$\pi^T = \begin{pmatrix} \sigma_{1:d}^T & \sigma^T \begin{pmatrix} G_{12} \\ u_2^T \end{pmatrix} \end{pmatrix}$$
Summary: Dangling Nodes, ctd.

- PageRank of nondangling nodes is independent of PageRank of dangling nodes.
- PageRank of nondangling nodes can be computed separately.
- Power method on lumped matrix L: same convergence rate as for G but L much smaller than G.
- Speed increases with # dangling nodes.
Is the Ranking Correct?

\[\pi^T = (0.23, 0.24, 0.26, 0.27) \]

- \[[x^{(k)}]^T = (0.27, 0.26, 0.24, 0.23) \]
 \[\|x^{(k)} - \pi\|_\infty = 0.04 \]
 Small error, but incorrect ranking

- \[[x^{(k)}]^T = (0, 0.001, 0.002, 0.997) \]
 \[\|x^{(k)} - \pi\|_\infty = 0.727 \]
 Large error, but correct ranking
Is the Ranking Correct?

After k iterations of power method:
Error: $\|x^{(k)} - \pi\| \leq 2 \alpha^k$

But: Do the components of $x^{(k)}$ have the same ranking as those of π?

Rank-stability, rank-similarity: [Lempel & Moran, 2005]
[Borodin, Roberts, Rosenthal & Tsaparas 2005]
Web Graph is a Ring

\[S = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix} \]

[Ipse & Wills]
All Pages are Trusted

S is circulant of order n, \(v = \frac{1}{n}1 \)

- **PageRank:** \(\pi = \frac{1}{n}1 \)
 All pages have **same PageRank**

- **Power method**
 \(x^{(0)} = v: \quad x^{(0)} = \pi \) correct ranking
 \(x^{(0)} \neq v: \quad [x^{(k)}]^T \sim \frac{1}{n}1^T + \alpha^k \left([x^{(0)}]^TS^k - \frac{1}{n}1 \right) \)
 Ranking does not converge (in exact arithmetic)
Only One Page is Trusted

\[v^T = (1 \ 0 \ 0 \ 0 \ 0 \ 0) \]
Only One Page is Trusted

PageRank decreases with distance from page 1

\[\pi^T \sim (1 \alpha \alpha^2 \alpha^3 \alpha^4) \]
Only One Page is Trusted

S is circulant of order n, $v = e_1$

- PageRank: $\pi^T \sim (1 \ \alpha \ \ldots \ \alpha^{n-1})$

- Power method with $x^{(0)} = v$:

 $[x^{(k)}]^T \sim \begin{pmatrix} 1 & \alpha & \ldots & \alpha^{k-1} & \frac{\alpha^k}{1-\alpha} & 0 & \ldots & 0 \end{pmatrix}$

 $[x^{(n)}]^T \sim \begin{pmatrix} 1 + \frac{\alpha^n}{1-\alpha} & \alpha & \alpha^2 & \ldots & \alpha^{n-1} \end{pmatrix}$

Rank convergence in n iterations
Too Many Iterations

Power method with $x^{(0)} = v = e_1$:

- After n iterations:
 \[[x^{(n)}]^T \sim \left(1 + \frac{\alpha^n}{1-\alpha} \alpha \alpha^2 \ldots \alpha^{n-1} \right) \]

- After $n + 1$ iterations:
 \[[x^{(n+1)}]^T \sim \left(1 + \alpha^n \alpha + \frac{\alpha^{n+1}}{1-\alpha} \alpha^2 \ldots \alpha^{n-1} \right) \]

If $\alpha = .85$, $n = 10$: \[\alpha + \frac{\alpha^{n+1}}{1-\alpha} > 1 + \alpha^n \]

Additional iterations can destroy a converged ranking.
Recovery of Ranking

S is circulant of order n

- After k iterations:

$$\left[x^{(k)}\right]^T = \alpha^k \left[x^{(0)}\right]^T S^k + (1 - \alpha) v^T \sum_{j=0}^{k-1} \alpha^j S^j$$

- After $k + n$ iterations:

$$\left[x^{(k+n)}\right]^T = \alpha^n \left[x^{(k)}\right]^T + (1 - \alpha^n) \pi^T$$

If $x^{(k)}$ has correct ranking, so does $x^{(k+n)}$
Any Personalization Vector

S is circulant of order n

- PageRank: $\pi^T \sim v^T \sum_{j=0}^{n-1} \alpha^j S^j$

- Power method with $x^{(0)} = \frac{1}{n} 1$

$$[x^{(n)}]^T = (1 - \alpha^n) \pi^T + \frac{\alpha^n}{n} 11^T$$

For any v: rank convergence after n iterations
Problems with Ranking

- Ranking may never converge
- Additional iterations can destroy ranking
- Small error does not imply correct ranking
- Rank convergence depends on: α, v, initial guess, matrix dimension, structure of web graph
- How do we know when the ranking is correct?
- Even if successive iterates have the same ranking, their ranking may not be correct
Summary

- Google orders web pages according to: **PageRank** and **hypertext analysis**
- **PageRank** = left eigenvector of G
 \[G = \alpha S + (1 - \alpha) 11^T \]
- Power method: simple and robust
- Error in iteration k bounded by α^k
- Convergence rate largely independent of dimension and eigenvalues of G
Summary, ctd

- PageRank **insensitive** to rounding errors
- Adding in-links **increases** PageRank
- Adding out-links **may decrease** PageRank
- **Dangling nodes** = pages w/o outlinks
 - Rank one change to hyperlink matrix
- **Lumping:**
 - PageRank of **non**dangling nodes computed **separately** from PageRank of dangling nodes
- **Ranking problem:** DIFFICULT
User-Friendly Resources

- **Rebecca Wills:**
 Google’s PageRank: The Math Behind the Search Engine
 Mathematical Intelligencer, 2006

- **Amy Langville & Carl Meyer:**
 Google’s PageRank and Beyond The Science of Search Engine Rankings
 Princeton University Press, 2006

- **Amy Langville & Carl Meyer:**
 Broadcast of On-Air Interview, November 2006
 Carl Meyer’s web page