Introduction to Randomized Matrix Algorithms

Ilse Ipsen

Students: John Holodnak, Thomas Wentworth

Research supported by NSF CISE CCF, NSF DMS, DARPA XData
Randomized algorithms

Solve a deterministic problem by statistical sampling

- Monte Carlo methods
 Von Neumann & Ulam, Los Alamos, 1946

- Simulated annealing: global optimization
This talk

Given: Real matrix A with more columns than rows
Want: Monte Carlo algorithm for matrix product AA^T

Why is this important?

- Monte Carlo algorithm produces approximation $X = BB^T$
Overview

- **Deterministic conditions for exact representation**
 When is $BB^T = AA^T$ possible?

- **Monte Carlo algorithm**
 Samples B so that $\mathbb{E}[BB^T] = AA^T$

- **Probabilistic bounds**
 Error $BB^T - AA^T$, and number of columns in B

- **Matrices with orthonormal rows, and singular values**
 How close is B to having orthonormal rows?

- **Coherence**
 Quantifying the difficulty of sampling: For which A can we get a good B?

- **Leverage scores**
 Improving on coherence

- **Condition numbers with respect to inversion**
 Departure of a basis from orthonormality
Deterministic conditions for exact representation
Gram product: AA^T

Real matrix $A = (A_1 \ldots A_n)$ with n columns

- **Exact computation**

 $$AA^T = A_1 A_1^T + \cdots + A_n A_n^T$$

- **Monte Carlo algorithm** [Drineas, Kannan & Mahoney]

 Sample c columns

 $$X = w_1 A_{t_1} A_{t_1}^T + \cdots + w_c A_{t_c} A_{t_c}^T$$
Gram product: AA^T

Real matrix $A = (A_1 \ldots A_n)$ with n columns

- **Exact computation**

$$AA^T = A_1A_1^T + \cdots + A_nA_n^T$$

- **Monte Carlo algorithm** [Drineas, Kannan & Mahoney]

 Sample c columns

 $$X = w_1 A_{t_1}A_{t_1}^T + \cdots + w_c A_{t_c}A_{t_c}^T$$

 Weights $w_j \geq 0$ chosen so that X is *unbiased estimator*

 $$\mathbb{E}[X] = AA^T$$
Existing work

Randomized matrix multiplication

Cohen & Lewis 1997, 1999
Rudelson 1999, Drineas & Kannan 2001
Frieze, Kannan & Vempala 2004
Drineas, Kannan & Mahoney 2006, Sarlós 2006
Rudelson & Vershynin 2007
Belabbas & Wolfe 2008
Magdon-Ismail 2010, Drineas & Zouzias 2010, Magen & Zouzias 2010
Pagh 2011
Hsu, Kakade & Zhang 2012, Li, Miller & Peng 2012
Liberty 2013

Connections to

Matrix concentration (Minsker, Tropp, …)
Low-rank approximations, subset selection (Boutsidis, …)
Nyström approximations (Gittens, …)
Graph sparsification (Spielman, Srivastava, …)
Compressed sensing (Donoho, Candés, …)
Matrix completion (Recht, …)
Want:

\[AA^T = A_1 A_1^T + \cdots + A_n A_n^T \]

Monte Carlo algorithm:

\[X = w_1 A_{t_1} A_{t_1}^T + \cdots + w_c A_{t_c} A_{t_c}^T \]

- Why should \(c \) columns produce a good approximation?
- How to determine the columns and weights?

Use the SVD
Singular Value Decomposition (SVD)

Real \(m \times n \) matrix \(A \) with \(\text{rank}(A) = r \)

\[
A = U \Sigma V^T
\]

- **Left singular vector matrix**
 \(U \) is \(m \times r \) with orthonormal columns: \(U^T U = I_r \)

- **Right singular vector matrix**
 \(V \) is \(n \times r \) with orthonormal columns: \(V^T V = I_r \)

- **Singular values**

\[
\Sigma = \begin{pmatrix}
\sigma_1 \\
\vdots \\
\sigma_r
\end{pmatrix}
\]

\(\sigma_1 \geq \cdots \geq \sigma_r > 0 \)
SVD of a short & fat matrix
Deterministic conditions for exact representation

[Holodnak & II 2013]

Given: Real matrix A and $c \geq \text{rank}(A)$

There exist indices $t_1 \leq \cdots \leq t_c$ and weights $w_j \geq 0$ so that

$$w_1 A_{t_1} A_{t_1}^T + \cdots + w_c A_{t_c} A_{t_c}^T = AA^T$$

if and only if

$$\left(\sqrt{w_1} e_{t_1} \quad \ldots \quad \sqrt{w_c} e_{t_c} \right)^T V$$

has orthonormal columns

Exact representation depends on right singular vectors
Indices not necessarily distinct
Columns of A can occur repeatedly
Proof of principle

Exact representation

\[w_1 A_{t_1} A_{t_1}^T + \cdots + w_c A_{t_c} A_{t_c}^T = AA^T \]

- Necessary & sufficient conditions for existence
- Conditions depend on right singular vector matrix \(V \)
- There are matrices that do not satisfy these conditions
- Connections to rank-constrained matrix approximation

[Friedland & Torokhti 2007]
Monte Carlo algorithm
Monte Carlo algorithm [Drineas et al. 2006, 2010]

Input: Real matrix A with n columns
- Sampling amount $c \geq 1$
- Probabilities $p_j \geq 0$ with $\sum_{j=1}^{n} p_j = 1$

for $j = 1$ to c do
- Sample t_j from $\{1, \ldots, n\}$ with probability p_{t_j} independently and with replacement
- $w_j \equiv 1/(cp_{t_j})$
end for

Output: $X = w_1 \ A_{t_1} A_{t_1}^T + \cdots + w_c \ A_{t_c} A_{t_c}^T$
How to sample

Given: Probabilities $0 \leq p_1 \leq \cdots \leq p_n$ with $\sum_{j=1}^{n} p_j = 1$

Want: Sample index $t = j$ from $\{1, \ldots, n\}$ with probability p_j

Inversion by sequential search [Devroye 1986]

1. Determine partial sums

 $$S_k \equiv \sum_{i=1}^{k} p_i \quad 1 \leq k \leq n$$

2. Pick uniform $[0, 1]$ random variable U

3. Determine integer j with $S_{j-1} < U \leq S_j$

4. Sampled index: $t = j$ with probability $p_j = S_j - S_{j-1}$
Expected value (mean)

\[X = \frac{1}{c p_{t_1}} A_{t_1} A_{t_1}^T + \cdots + \frac{1}{c p_{t_c}} A_{t_c} A_{t_c}^T \]

Expected value of a single sample

\[\mathbb{E} \left[\frac{1}{c p_{t_j}} A_{t_j} A_{t_j}^T \right] = \sum_{k=1}^{n} p_k \frac{1}{c p_k} A_k A_k^T = \frac{1}{c} \sum_{k=1}^{n} A_k A_k^T = \frac{1}{c} AA^T \]

Sampling independently & with replacement:

\[\mathbb{E}[X] = \mathbb{E} \left[\frac{1}{c p_{t_1}} A_{t_1} A_{t_1}^T \right] + \cdots + \mathbb{E} \left[\frac{1}{c p_{t_c}} A_{t_c} A_{t_c}^T \right] = c \mathbb{E} \left[\frac{1}{c p_{t_j}} A_{t_j} A_{t_j}^T \right] \]

\[= AA^T \]

Unbiased estimator: \(\mathbb{E}[X] = AA^T \)
Concentration around the mean

\[X = \frac{1}{c} \rho_{t_1} A_{t_1} A_{t_1}^T + \cdots + \frac{1}{c} \rho_{t_c} A_{t_c} A_{t_c}^T \]

- **Unbiased estimator:** \(\mathbb{E}[X] = AA^T \)

- **Column norm probabilities** [Drineas, Kannan & Mahoney 2006]

\[
p_j = \frac{\|A_j\|_2^2}{\|A\|_F^2} \quad 1 \leq j \leq n
\]

\[
\text{minimize } \mathbb{E} \left[\|X - AA^T\|_F^2 \right]
\]

- **We want:** For any \(\delta > 0 \) with probability at least \(1 - \delta \)

\[
\frac{\|X - AA^T\|_2}{\|AA^T\|_2} \leq f(\delta, c, \ldots)
\]

- **Idea:** \(X \) is sum of \(c \) matrix-valued random variables
8 × 4177 Abalone matrix [Bache & Lichman 2013]

The diagram shows the relative error of the Monte Carlo algorithm as a function of the number of samples. The Monte Carlo algorithm has low relative accuracy as the number of samples increases.
Probabilistic bounds
Matrix Bernstein concentration inequality [Tropp 2011]

• Independent random real symmetric $m \times m$ matrices X_j
• $\mathbb{E}[X_j] = 0$ \{zero mean\}
• $\|X_j\|_2 \leq \tau$ \{bounded\}
• $\left\| \sum_j \mathbb{E}[X_j^2] \right\|_2 \leq \rho$ \{“variance”\}

For any $\epsilon > 0$

$$
\mathbb{P} \left[\left\| \sum_j X_j \right\|_2 \geq \epsilon \right] \leq m \exp \left(-\frac{\epsilon^2/2}{\rho + \tau \epsilon/3} \right)
$$

\{deviation from the mean\}
Relative error due to randomization [Holodnak & Il]

Given: Real matrix \(A = (A_1 \ldots A_n) \)

Stable rank: \(\text{sr}(A) \equiv \frac{\|A\|_F^2}{\|A\|_2^2} \)

Monte Carlo algorithm (with probabilities \(p_j = \frac{\|A_j\|_2^2}{\|A\|_F^2} \))

\[
X = \frac{1}{c \rho_{t_1}} A_{t_1} A_{t_1}^T + \cdots + \frac{1}{c \rho_{t_c}} A_{t_c} A_{t_c}^T
\]

For any \(\delta > 0 \), with probability at least \(1 - \delta \)

\[
\frac{\|X - AA^T\|_2}{\|AA^T\|_2} \leq \gamma + \sqrt{\gamma (6 + \gamma)}
\]

where

\[
\gamma \equiv \frac{\ln (\text{rank}(A)/\delta)}{3c} \text{sr}(A)
\]
Given: Real matrix $A = (A_1 \ldots A_n)$

Monte Carlo algorithm (with probabilities $p_j = \|A_j\|_2^2/\|A\|_F^2$)

$$X = \frac{1}{c p_{t_1}} A_{t_1} A_{t_1}^T + \cdots + \frac{1}{c p_{t_c}} A_{t_c} A_{t_c}^T$$

If $0 < \epsilon < 1$, $0 < \delta < 1$ and

$$c \geq \frac{8}{3} \frac{\ln (\text{rank}(A)/\delta)}{\epsilon^2} \text{sr}(A)$$

then with probability at least $1 - \delta$

$$\frac{\|X - AA^T\|_2}{\|AA^T\|_2} \leq \epsilon$$
Summary of probabilistic bounds

Upper bound on 2-norm relative error due to randomization
Lower bound on number of samples

Bounds
- depend on the rank and stable rank
- do not depend on matrix dimensions
- informative even for small matrix dimensions and stringent success probabilities (99 percent)

Not discussed
- Sampling with replacement, Bernoulli sampling
- Probabilities based on leverage scores
- Tightness of bounds
Special case:
Matrices with orthonormal rows
From matrix multiplication to singular values

Given: Real $m \times n$ matrix Q with $QQ^T = I_m$

Singular values: $\sigma_j(Q) = 1$, $1 \leq j \leq m$

Monte Carlo algorithm: $X = \tilde{Q}\tilde{Q}^T$ where \tilde{Q} has $c \geq m$ columns

$$\|\tilde{Q}\tilde{Q}^T - I\|_2 \leq \epsilon$$

Matrix multiplication bounds imply singular value bounds

- Singular values of \tilde{Q}

$$\sqrt{1 - \epsilon} \leq \sigma_j(\tilde{Q}) \leq \sqrt{1 + \epsilon} \quad 1 \leq j \leq m$$

- Condition number of \tilde{Q} with respect to inversion

$$\|\tilde{Q}\|_2\|\tilde{Q}^\dagger\|_2 = \frac{\sigma_1(\tilde{Q})}{\sigma_m(\tilde{Q})} = \sqrt{\frac{1 + \epsilon}{1 - \epsilon}}$$
Singular value bounds [Holodnak & II]

Given: Real matrix \(Q = (Q_1 \ldots Q_n) \) with \(QQ^T = I_m \)

Monte Carlo algorithm (with probabilities \(p_j = \|Q_j\|_2^2/m \))

\[
X = \tilde{Q}\tilde{Q}^T \quad \tilde{Q} \equiv \left(\sqrt{\frac{1}{c p_{t_1}}} Q_{t_1} \ldots \sqrt{\frac{1}{c p_{t_c}}} Q_{t_c} \right)
\]

If \(0 < \epsilon < 1, 0 < \delta < 1 \) and

\[
c \geq 2(1 + \frac{\epsilon}{3}) m \frac{\ln (m/\delta)}{\epsilon^2}
\]

then with probability at least \(1 - \delta \)

\[
\sqrt{1 - \epsilon} \leq \sigma_j(\tilde{Q}) \leq \sqrt{1 + \epsilon} \quad 1 \leq j \leq m
\]
Uniform sampling [Holodnak & II]

Given: Real matrix \(Q = (Q_1 \ldots Q_n) \) with \(QQ^T = I_m \)

Largest column norm \(\mu \equiv \max_{1 \leq j \leq n} \| Q_j \|_2^2 \)

Monte Carlo algorithm (with probabilities \(p_j = 1/n \))

\[
X = \tilde{Q} \tilde{Q}^T \quad \tilde{Q} \equiv \left(\sqrt{\frac{1}{c \ p_{t_1}}} Q_{t_1} \ldots \sqrt{\frac{1}{c \ p_{t_c}}} Q_{t_c} \right)
\]

If \(0 < \epsilon < 1 \), \(0 < \delta < 1 \) and

\[
c \geq 2(1 + \frac{\epsilon}{3}) n \mu \frac{\ln (m/\delta)}{\epsilon^2}
\]

then with probability at least \(1 - \delta \)

\[
\sqrt{1 - \epsilon} \leq \sigma_j(\tilde{Q}) \leq \sqrt{1 + \epsilon} \quad 1 \leq j \leq m
\]
Probabilistic singular value bounds

\[\sqrt{1 - \epsilon} \leq \sigma_j(\tilde{Q}) \leq \sqrt{1 + \epsilon} \quad 1 \leq j \leq m \]

- Column norm probabilities \(p_j = \| Q_j \|_2^2 / m \)
 Number of samples \(c = \Omega \left(m \ln m / \epsilon^2 \right) \)

- Uniform probabilities \(p_j = 1/n \)
 Number of samples \(c = \Omega \left(n \mu \ln m / \epsilon^2 \right) \quad \mu \equiv \max_j \| Q_j \|_2^2 \)

Connections to
- Coupon collector’s problem (Halko, Martinsson & Tropp)
- Compressed sensing (Donoho, Candés, ...)

Coherence
Properties of Coherence

Real matrix $Q = (Q_1 \ldots Q_n)$ with $QQ^T = I_m$

$$\text{Coherence } \mu \equiv \max_{1 \leq j \leq n} \|Q_j\|_2^2$$

- $m/n \leq \mu \leq 1$
- **Maximal** coherence: $\mu = 1$
 At least one row of Q is a canonical vector
- **Minimal** coherence: $\mu = m/n$
 Rows of Q are rows of a Hadamard matrix
- Coherence measures “correlation with standard basis”
- Quantifies difficulty of recovering matrix from sampling
Coherence in General

- Donoho & Huo 2001
 Mutual coherence of two bases

- Candés, Romberg & Tao 2006

- Candés & Recht 2009
 Matrix completion: Recovering a low-rank matrix by sampling its entries

- Mori & Talwalkar 2010, 2011
 Estimation of coherence

- Avron, Maymounkov & Toledo 2010
 Meng, Saunders & Mahoney 2011
 Randomized preconditioners for least squares

- Drineas, Magdon-Ismail, Mahoney & Woodruff 2011
 Fast approximation of coherence
Leverage scores
Leverage scores

\[Q = (Q_1 \ldots Q_n) \text{ with } QQ^T = I_m \]

Idea: Use all column norms

- Leverage scores = squared column norms of \(Q \)

\[\ell_j = \| Q_j \|_2^2 \quad 1 \leq j \leq n \]

- Coherence = largest leverage score

\[\mu = \max_{1 \leq j \leq n} \ell_j \]

- Low coherence \iff uniform leverage scores

Leverage scores: Importance sampling in randomized algorithms
[Drineas & Mahoney 2006, …]
Leverage scores are ubiquitous

- **Statistics**

 Leverage scores: Outliers in regression problems

- **Astronomy**

 [Yip, Mahoney, Szalay, Csabai, Budavári, Wyse & Dobos 2013]

 Leverage scores: Important wave lengths in galaxy evolution

- **Electronic structure calculations**

 [Bekas, Kokiopoulou & Saad 2008]

 Leverage scores: Charge densities

- **Graph Theory**

 [Drineas & Mahoney 2010]

 Leverage scores: Effective resistance of edges
Condition Number Bound [II & Wentworth]

- $m \times n$ matrix Q with orthonormal rows
- Leverage scores $\ell_j = \|Q_j\|_2^2$

 $$L = \text{diag}(\ell_1 \ldots \ell_n)$$

- Coherence $\mu = \|L\|_2 = \max_{1 \leq j \leq n} \ell_j$

- Uniform sampling, number of sampled columns $c \geq 1$
- Error tolerance $0 < \epsilon < 1$

Failure probability

$$\delta = 2m \exp\left(-\frac{3}{2} \frac{c \epsilon^2}{m (3 \|QLQ^T\|_2 + \mu \epsilon)}\right)$$

With probability at least $1 - \delta$:
$$\|\tilde{Q}\|_2 \|\tilde{Q}^\dagger\|_2 \leq \sqrt{\frac{1+\epsilon}{1-\epsilon}}$$
What to do about $\|QLQ^T\|_2$

Failure probability

$$\delta = 2m \exp \left(-\frac{3}{2} \frac{c \epsilon^2}{m (3 \|QLQ^T\|_2 + \mu \epsilon)} \right)$$

where

$$\mu^2 \leq \|QLQ^T\|_2 \leq \mu$$

- Want: Simple accurate approximation of $\|QLQ^T\|_2$
- How: Derive bound for general scaled matrices
- Connections to
 - Majorization, lattice superadditive maps
 - Inverse eigenvalue problems [Dhillon et al. 2005]
General scaled matrices [Wentworth & II]

- $m \times n$ matrix Z with $\text{rank}(Z) = m$
- Largest squared column norm $\mu_z \equiv \max_{1 \leq j \leq n} \| Z_j \|_2^2$
- Diagonal matrix $D = \text{diag}(d_1 \ldots d_n)$

 $d_{[1]} \geq \cdots \geq d_{[n]}$

Bound $\| ZD \|_2$ in terms of μ_z and largest elements of D

If $t = \left\lfloor 1/(\| Z^\dagger \|_2^2 \mu_z) \right\rfloor$ then

$$\| ZD \|_2^2 \leq \mu_z \sum_{j=1}^t d_{[j]}^2 + (\| Z \|_2^2 - t \mu_z) \, d_{[k]}^2$$

where $k = 1$ or $t + 1$
Bound for $\| QLQ^T \|_2$

- $m \times n$ matrix Q with $QQ^T = I_m$
- Coherence $\mu \equiv \max_{1 \leq j \leq n} \| Q_j \|_2^2$
- Leverage scores $\ell[1] \geq \cdots \geq \ell[n]$

If $t = \lfloor 1/\mu \rfloor$ then

$$\| Q L Q^T \|_2 = \| Q L^{1/2} \|_2^2 \leq \mu \sum_{j=1}^{t} \ell[j] + (1 - t \mu) \ell[t+1]$$

If $t = 1/\mu$ is an integer then

$$\| Q L Q^T \|_2 \leq \mu \sum_{j=1}^{t} \ell[j] \leq \mu$$

Bound for $\| QLQ^T \|_2$ tighter than coherence μ
Simpler probabilistic bound [Wentworth & II]

- $m \times n$ matrix Q with $QQ^T = I_m$
- Leverage scores $\mu \equiv \ell[1] \geq \cdots \geq \ell[n]$
- Uniform sampling of columns
- Approximation to $\|QLQ^T\|_2$

$$\tau \equiv \mu \sum_{j=1}^{t} \ell[j] + (1 - t \mu) \ell[t+1] \quad t = \lfloor 1/\mu \rfloor$$

If

$$c \geq \frac{2}{3} \left(3 \tau + \epsilon \mu \right) n \ln(2m/\delta)/\epsilon^2$$

then with probability at least $1 - \delta$

$$\|\tilde{Q}\|_2 \|\tilde{Q}^\dagger\|_2 \leq \sqrt{\frac{1 + \epsilon}{1 - \epsilon}}$$
Summary

Monte Carlo algorithm for Gram product AA^T

- **Deterministic** conditions for exact representation
 Depend on right singular vector matrix

- **Probabilistic** bounds for 2-norm relative error, number of sampled columns
 Depend on rank and stable rank of A, but not dimension

- **Probabilistic singular value bounds**
 Matrices with orthonormal rows
 Uniform sampling: Bounds depend on coherence

- **Probabilistic condition number bounds**
 Matrices with orthonormal rows
 Uniform sampling: Tighter bounds in terms of leverage scores

- **Bound for 2-norm of scaled matrices**
 In terms of largest column norm, and elements of diagonal matrix
Why randomized algorithms?

- Reduction of **massive** data sets, for **low-accuracy** requirements
 - Least squares/regression, SVD/PCA, subspace approximation, model reduction

- Advantages
 - “Easy” to analyze, forgiving, probabilistic bounds more optimistic

- Applications
 - Machine learning, population genomics, astronomy, nuclear engineering

- **Survey papers**
 - Halko, Martinsson & Tropp 2011
 - Mahoney 2011