Index

A
absolute error 30
 componentwise 35
 in subtraction 31
 normwise 35
angle in least squares problem 104, 105
approximation to 0 30
associativity 6, 12
 misuse 13

B
backsubstitution 57
basis 125
 orthonormal 125
battleship 31
Bessel's inequality 82
bidiagonal matrix 56
Bill Gatez 29
block Cholesky factorization 73
block diagonal matrix 120
block LU factorization 67
block triangular matrix 57, 67, 73
 rank of 120

C
canonical vector 5, 10, 15
 in linear combination 7
 in outer product 17
 captain 31
catastrophic cancellation 31, 32
 example of 31
 occurrence of 32
Cauchy-Schwarz inequality 34
Cholesky factorization 58, 70
 algorithm 71
generalized 73
 in linear system solution 72
 lower-upper 71
 uniqueness 71
 upper-lower 72
 Cholesky solver 72
circular shift matrix 22
 closest matrix in the two norm .. 41
column pivoting 82
column space 92, 94
 of transpose 93
 and residual 99
 and singular vectors 94, 114
 as a subspace 111
 in partitioned matrix 113
 of full rank matrix 94
 of matrix product 112
 of outer product 116
 sum of 118
column vector 3
 common digits 30
 commutativity 6, 12
 diagonal matrices 25
 complementary subspace see direct sum
 complete pivoting 64
 complex 3
 conjugate 14
 multiplication 14
 number 14, 16
 condition number 32
 bidiagonal matrix 56
 componentwise 57
 least squares 102, 105, 106
 left inverse 103
 linear system 51, 53, 54, 56, 57
 matrix addition 41
 matrix inversion 45–47
column space 114
norm 41, 91
null space 114
product 14
singular 19
singular values 84
subspaces 121
identity matrix 4, 15, 17, 43, 46, 47
IEEE double precision arithmetic . 30
unit round off 31
ill-conditioned linear system . . . 28, 29
ill-posed least squares problem . . 102
imaginary unit 14
infinity norm 34,
and inner product 34
in Gaussian elimination 66
in LU factorization 65
one norm of transpose 41
outer product 41
relations with other norms 36, 37, 41
inner product 7
for polynomial 8
for sum of scalars 7
in matrix vector multiplication 8, 9
properties 16
intersection of null spaces ... 119
intersection of subspaces . . . 117, 118
in direct sum 121
properties 121
inverse
partitioned 113
inverse of a matrix 19, 20
condition number 45, 52
distance to singularity 45, 46
left 99
partitioned 20, 113
perturbation 44
perturbed 47
perturbed identity 43, 46, 47
residuals 46
right 99
singular values 84
SVD 84
two norm 85
invertible matrix see nonsingular matrix
involutory matrix 13, 14, 21, 23
inverse of 19
K
kernel 2 see null space
L
LDU factorization 67
least squares 97
and direct sum 124
angle 104, 105
condition number 102, 105, 106
effect of right-hand side . . . 102, 105
full column rank 100
ill-conditioned 106
ill-posed 102
rank deficient 102
relative error 102, 104, 106, 107
residual 99
least squares residual 97
conditioning 107
least squares solutions 97
by QR factorization 108
full column rank 100
in terms of SVD 97, 108
infinitely many 98
minimal norm 100
Moore-Penrose inverse 99
left inverse 99
condition number 103
left null space 93
and singular vectors 94
dimension of 115
left singular vector see singular vector
linear combination 7, 10
in linear system 49
in matrix vector multiplication 8, 9
linear system 49
condition number 51–54, 56, 57
effect of right-hand side . . . 55, 56
full rank matrix 95
ill-conditioned 52
nonsingular 52
perturbed 50
relative error 51, 53, 54, 56, 57
residual 50
residual bound 51, 53, 56
triangular 51
linear system solution 49, 120
by direct method 58
by Cholesky factorization 72
by LU factorization 66
by QR factorization 74
full rank matrix 95
nonsingular matrix 49
what not to do 63
linearly dependent columns 79
linearly independent columns 79
test for 80
lower triangular matrix 23
forward elimination 57
in Cholesky factorization 70
in QL factorization 78
lower-upper Cholesky factorization 71
LU factorization 58, 64
algorithm 64
in linear system solution 66
 permutation matrix 65
stability 66
uniqueness 24
with partial pivoting 64, 65

M
matrix 3
distance to singularity 45
equality 10
full rank 91
 idempotent 121
 multiplications 42
 nilpotent 91, 124
 normal 96, 124
 notation 4
 powers 13, 21
 rank see rank
 rank deficient 91
 skew-symmetric 21
 square 3
 vector multiplication 8, 11
with linearly dependent columns
79
with linearly independent columns
79
with orthonormal columns 81, 91
matrix addition 6
condition number 41
matrix inversion see inverse of a
 matrix
matrix multiplication 11
condition number 42, 52, 61
matrix norm 37
well-conditioned 37
matrix product 11
column space 112
condition number 42
null space 112
rank of 91, 116
maximum norm see infinity norm
minimal norm least squares solution 100
Moore-Penrose inverse 98
column space 100
defining properties 101
in idempotent matrix 100
in least squares 99
norm 100, 101
null space 100
of full-rank matrix 98
of nonsingular matrix 100
of product 101
orthonormal columns 101
outer product 100
partial isometry 101
partitioned 101
QR factorization 101
multiplication 33
multiplier in LU factorization 65

N
nilpotent matrix 13, 21, 91, 124
singular 21
strictly triangular 24
nonsingular matrix 19, 21, 47, 49
ccondition number w.r.t. inversion 45
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>distance to singularity</td>
<td>45</td>
</tr>
<tr>
<td>LU factorization of</td>
<td>65</td>
</tr>
<tr>
<td>positive definite</td>
<td>69</td>
</tr>
<tr>
<td>product of</td>
<td>20</td>
</tr>
<tr>
<td>QL factorization of</td>
<td>78</td>
</tr>
<tr>
<td>QR factorization of</td>
<td>73</td>
</tr>
<tr>
<td>triangular</td>
<td>23</td>
</tr>
<tr>
<td>unit triangular</td>
<td>24</td>
</tr>
<tr>
<td>norm</td>
<td>33, 37</td>
</tr>
<tr>
<td>defined by matrix</td>
<td>37</td>
</tr>
<tr>
<td>of a matrix</td>
<td>37</td>
</tr>
<tr>
<td>of a product</td>
<td>39</td>
</tr>
<tr>
<td>of a submatrix</td>
<td>40</td>
</tr>
<tr>
<td>of a vector</td>
<td>33</td>
</tr>
<tr>
<td>of diagonal matrix</td>
<td>40</td>
</tr>
<tr>
<td>of idempotent matrix</td>
<td>41</td>
</tr>
<tr>
<td>of permutation matrix</td>
<td>40</td>
</tr>
<tr>
<td>reverse triangle inequality</td>
<td>37</td>
</tr>
<tr>
<td>submultiplicative</td>
<td>38, 39</td>
</tr>
<tr>
<td>unit norm</td>
<td>35</td>
</tr>
<tr>
<td>normal equations</td>
<td>109</td>
</tr>
<tr>
<td>instability</td>
<td>109</td>
</tr>
<tr>
<td>normal matrix</td>
<td>96, 124</td>
</tr>
<tr>
<td>notation</td>
<td>4</td>
</tr>
<tr>
<td>null space</td>
<td>92, 94</td>
</tr>
<tr>
<td>and singular vectors</td>
<td>94, 114</td>
</tr>
<tr>
<td>as a subspace</td>
<td>111</td>
</tr>
<tr>
<td>dimension of</td>
<td>115</td>
</tr>
<tr>
<td>in partitioned matrix</td>
<td>113</td>
</tr>
<tr>
<td>intersection of</td>
<td>119</td>
</tr>
<tr>
<td>of full rank matrix</td>
<td>94</td>
</tr>
<tr>
<td>of outer product</td>
<td>116</td>
</tr>
<tr>
<td>of product</td>
<td>112</td>
</tr>
<tr>
<td>of transpose</td>
<td>93</td>
</tr>
<tr>
<td>numerical stability</td>
<td>see stability</td>
</tr>
<tr>
<td>SVD</td>
<td></td>
</tr>
<tr>
<td>Moore-Penrose inverse</td>
<td>101</td>
</tr>
<tr>
<td>singular values</td>
<td>91</td>
</tr>
<tr>
<td>outer product</td>
<td>10, 11, 17</td>
</tr>
<tr>
<td>column space</td>
<td>116</td>
</tr>
<tr>
<td>in Schur complement</td>
<td>65</td>
</tr>
<tr>
<td>in singular matrix</td>
<td>45</td>
</tr>
<tr>
<td>infinity norm</td>
<td>41</td>
</tr>
<tr>
<td>Moore-Penrose inverse</td>
<td>100</td>
</tr>
<tr>
<td>null space</td>
<td>116</td>
</tr>
<tr>
<td>of singular vectors</td>
<td>88</td>
</tr>
<tr>
<td>rank</td>
<td>87, 116</td>
</tr>
<tr>
<td>SVD</td>
<td>87</td>
</tr>
<tr>
<td>two norm</td>
<td>41</td>
</tr>
<tr>
<td>O</td>
<td></td>
</tr>
<tr>
<td>one norm</td>
<td>34, 38</td>
</tr>
<tr>
<td>and inner product</td>
<td>34</td>
</tr>
<tr>
<td>relations with other norms</td>
<td>36, 37, 41</td>
</tr>
<tr>
<td>orthogonal matrix</td>
<td>21</td>
</tr>
<tr>
<td>in QR factorization</td>
<td>24</td>
</tr>
<tr>
<td>orthogonal subspace</td>
<td>123</td>
</tr>
<tr>
<td>and QR factorization</td>
<td>124</td>
</tr>
<tr>
<td>direct sum</td>
<td>124</td>
</tr>
<tr>
<td>properties</td>
<td>124</td>
</tr>
<tr>
<td>subspace of a matrix</td>
<td>123</td>
</tr>
<tr>
<td>orthonormal basis</td>
<td>125</td>
</tr>
<tr>
<td>orthonormal columns</td>
<td>81</td>
</tr>
<tr>
<td>condition number</td>
<td>106</td>
</tr>
<tr>
<td>in polar decomposition</td>
<td>92</td>
</tr>
<tr>
<td>Moore-Penrose inverse</td>
<td>101</td>
</tr>
<tr>
<td>p-norm</td>
<td>34, 38</td>
</tr>
<tr>
<td>with permutation matrix</td>
<td>36</td>
</tr>
<tr>
<td>parallelogram equality</td>
<td>37</td>
</tr>
<tr>
<td>partial isometry</td>
<td>101</td>
</tr>
<tr>
<td>partial pivoting</td>
<td>64, 65</td>
</tr>
<tr>
<td>partitioned inverse</td>
<td>20, 113</td>
</tr>
<tr>
<td>partitioned matrix</td>
<td>23</td>
</tr>
<tr>
<td>permutation matrix</td>
<td>22</td>
</tr>
<tr>
<td>in LU factorization</td>
<td>65</td>
</tr>
<tr>
<td>partitioned</td>
<td>23</td>
</tr>
<tr>
<td>product of</td>
<td>22</td>
</tr>
<tr>
<td>transpose of</td>
<td>23</td>
</tr>
<tr>
<td>perturbation</td>
<td>27</td>
</tr>
<tr>
<td>pivot</td>
<td>65</td>
</tr>
<tr>
<td>polar decomposition</td>
<td>92</td>
</tr>
<tr>
<td>closest unitary matrix</td>
<td>92</td>
</tr>
<tr>
<td>polar factor</td>
<td>92</td>
</tr>
<tr>
<td>polarization identity</td>
<td>37</td>
</tr>
<tr>
<td>positive definite matrix</td>
<td>69</td>
</tr>
<tr>
<td>Cholesky factorization</td>
<td>70, 71</td>
</tr>
<tr>
<td>diagonal elements of</td>
<td>69, 72</td>
</tr>
<tr>
<td>generalized Cholesky factorization</td>
<td>73</td>
</tr>
<tr>
<td>in polar decomposition</td>
<td>92</td>
</tr>
</tbody>
</table>
lower-upper Cholesky factorization 71
nonsingular 69
offdiagonal elements of 72
principal submatrix of 70
Schur complement of 70
SVD 84
test for 71
upper-lower Cholesky factorization 72
positive semi-definite matrix 69
principal submatrix 4
positive definite 70
product of singular values 86
Pythagoras theorem 37
Q
QL factorization 78
QR factorization 58, 73
algorithm 77, 80
and orthogonal subspace 124
column space 114
Moore-Penrose inverse 101
null space 114
orthonormal basis 126
rank revealing 92
thin 81
uniqueness 24, 73
with column pivoting 82
QR solver 74, 108
R
range see column space
rank 87
and reduced SVD 88
deficient 91
full 91
of a submatrix 119
of block diagonal matrix 120
of block triangular matrix 120
of matrix product 91, 116
of outer product 87, 116
of Schur complement 120
of transpose 90
of zero matrix 87
real 3
reduced SVD 88
reflection 22
Householder 78
relative error 30
componentwise 36
in subtraction 32
normwise 35
relative perturbation 31
residual 50, 97
and column space 99
computation of 108
large norm 103
matrix inversion 46
norm 51–53
of a linear system 50
of least squares problem 97, 107
relation to perturbations 50
small norm 51
uniqueness 99
residual bound 51, 53, 56, 107
right inverse 99
right singular vector see singular vector
row space 93
and singular vectors 94
dimension of 115
row vector 3
S
scalar 3
scalar matrix multiplication 6
Schur complement 20, 65, 67
positive definite 70
rank 120
sensitive 1, 27
Sherman-Morrison formula 20
shift matrix 16
circular 22
singular matrix 19, 19
distance to 45
singular value decomposition see SVD
singular values 83
relation to condition number 85
conditioning of 86
extreme 85
in least squares problem......97
in QR solver74
of a unitary matrix40
of inverse85
of transpose40
outer product41
parallelogram inequality37
polarization identity37
relation to singular values ...85
relations with other norms ...37, 41
theorem of Pythagoras37
with unitary matrix36

U
UL factorization67
uncertainty27, 31, 50
unit round off31
unit triangular matrix23
 in LU factorization24, 64
 inverse of24
unit-norm vector35
unitary matrix21, 46, 92
 2 × 221
 closest92
 Givens rotation21
 Hermitian23
 Householder reflection ...78
 in QL factorization78
 in QR factorization24, 73
 in SVD83
 partitioned23
 product of23
 reflection22
 singular values84
 transpose of23
 triangular25
upper triangular matrix23
 backsubstitution57
 bound on condition number .58
 in Cholesky factorization .70–72
 in LU factorization24, 64
 in QR factorization24, 73
 linear system solution57
 nonsingular23
upper-lower Cholesky factorization72

V
Vandermonde matrix5, 10
vector norm33

Z
zero matrix4