Rational and Replacement Invariants
Evelyne Hubert
Irina Kogan
http://www.math.ncsu.edu/~ikogan

Group actions are ubiquitous in mathematics. They arise in diverse areas of applications, from mechanics to computer vision. A classical but central problem is to compute a complete set of invariants.

Definitions

Algebraic Group

\(G \subset k^d \) is an algebraic variety. \(G \subset k[\lambda_1, \ldots, \lambda_n] \) is the ideal of \(G \)

\[m: G \times G \to G \quad \text{and} \quad \pi: G \to G \]

\(\lambda^* : G \times k \to k^d \)

\((\lambda, \mu) \mapsto \lambda \cdot \mu \)

\(\lambda^* : G \to G \)

\(\lambda \mapsto \lambda = \lambda \cdot 1 \)

\(\lambda^* : G \times k \to k^d \)

\(\lambda \cdot \lambda' = \alpha \quad \lambda = \lambda(\alpha) \)

\(\lambda^* : G \times k \to k^d \)

\(\lambda \mapsto \lambda = \lambda(\alpha) \quad \alpha \in k \)

Rational Action on \(Z^d \)

\(G \times Z \to Z \quad \lambda : (\mu, z) \to \lambda \cdot (\mu, z) \quad \lambda \cdot (\mu, z) = (\lambda^* \mu, \lambda^* z) \quad e = e \in G \)

Field of Rational Invariants

\(k[G] \)

Rational Invariant

\[p(z) \in k[G] \quad p(z) \mapsto p(z) \quad \text{mod } G \]

Finiteness

\(k[G] \subset (k[r_1, \ldots, r_d]) \subset k[Z] \)

Orbit separation

\[p(z) \in k[G] \quad p(z) \mapsto p(z) \quad \text{mod } G \]

Examples

Graph of the action

\[O = \{ (z, \lambda) \in Z \times Z \mid 3 \in G \} \quad \text{s.t.} \quad \lambda \cdot z = z \]

It's ideal \(O = (G + (Z - z)) \times k[Z] \)

\((Z - z) = (h_2 Z - g_2, g_1 \leq i \leq n) : h_2 \]

Orbit extension of \(O \) in \(k[Z] \)

Invariance

\[\{ (z, \lambda) \in O \mid p(z, \lambda \cdot z) = p(z, \lambda \cdot z) \} \]

The reduced Gröbner basis of \(O \)

\[\{ r_1, \ldots, r_d \} \] its coefficients

Rewriting Algorithm

\[\tilde{Q} \]

In:

\[Q, r \in k[Z] \]

Output:

\[R \]

Scalar, translation, reflection, rotation.

Cross-section of degree \(d \)

A variety that intersects generic orbits in \(d \) simple points.

Rational Invariants

Construction of Rational Invariants

\[\{ r_1, \ldots, r_d \} \text{ its coefficients} \]

Replacing Invariants

If \(d \) then \(\tilde{Q} \) is a reduced Gröbner basis

\[\{ r_1, \ldots, r_d \} \]

Equivalence of Curves \(\Rightarrow \) Object Recognition

\[Y \]

\[X \]

The Big Project: Invariant Differential Systems

A Problem in Differential Elimination: Equations for \(\mathcal{O} \)

\[\{ r_1, \ldots, r_d \} \]

Note:

Fundamental invariants

Syzygies

Differential Rewriting of \(\mathcal{O} \)

in terms of \(Z = (x_1, x_2, \ldots, x_{d+1}, y_1, \ldots, y_d) \) and \(\Delta = \{ \delta_1, \ldots, \delta_d \} \)

Invariant Differential Invariants

Tips & Techniques

The cross-section is chosen so that \(s_1, s_2, \ldots, s_d \) and \(\delta_1, \delta_2, \ldots, \delta_d \) depend only on \(s \) and its derivatives.

To simplify the commutation rules we chose

\[Z = x_1, x_2, \ldots, x_{d+1}, y_1, \ldots, y_d \]

Algebra of Differential Invariants

Non-commutation of the derivations:

Syzygies of the fundamental invariants:

Differential Invariant Projection

Treat \(Z \cup Z^d \) in the differential polynomial ring with non trivial commutation rules [Hubert 05]

Tips

The cross-section is chosen so that \(s_1, s_2, \ldots, s_d \) and \(\delta_1, \delta_2, \ldots, \delta_d \) depend only on \(s \) and its derivatives.

To simplify the commutation rules we choose

\[Z = x_1, x_2, \ldots, x_{d+1}, y_1, \ldots, y_d \]