407 TOOL BOX

Throughout let G be a group with identity e, and a,b,x,y be elements in G. Being a subgroup (ideal) is denoted by the symbol $\leq (\leq)$.

1. Local Results:

(a) (i) $a^k = e \iff O(a)|k$. \\
(ii) $a^k = a^r \iff O(a)|(k-r)$.

(b) If $O(a) = pq$ then $O(a^p) = q$.

(c) (i) $O(a^k) = O(a)/(k,O(a))$ and $O(a^k)|O(a)$.
(ii) $O(a^k) = O(G)$ iff $(k,O(G)) = 1$ and $O(a) = O(G)$

(d) If $ab = ba$ then
(i) $a^kb^r = b^r a^k$ for all k,r.
(ii) $\frac{d}{a}|O(ab)|L$, where $d = O(a,O(b))$ and $L = [O(a),O(b)]$.
(iii) If $d = (O(a),O(b)) = 1$, then $O(ab) = O(a)O(b)$.

(e) $ab = ba$ then $a^kb = b^ka$. If $ab = ba^{-1}$ then $a^kb^2b^{-1} = b^2a^k$

(f) In a finite abelian group G,
(i) If $O(a)|O(b)$, then there exists z in G, such that $O(b)|O(z)$, but that $b \neq z$.
(ii) If $O(y)$ is maximal then $O(a)|O(y)$, $\forall a \in G$.

(g) (i) $O(a) = O(a^{-1})$
(ii) $O(b^{-1}ab) = O(a)$
(iii) $(ab,c)^{-1} = c^{-1}...b^{-1}a^{-1}$.

2. Global Results

(a) (i) If $H \leq G$ then $O(H)|O(G)$
(ii) index of H in $G = \# \{\text{left-cosets}\} = \# \{\text{right-cosets}\} = O(G)/O(H)$
(iii) $O(a)\mid O(G)$
(iv) $H \leq G$ iff $ab^{-1} \in H$ (subgroup)
(v) $S \leq R$ iff $S-S \subseteq S$ and $S,S \subseteq S$ (subring)
(vi) $I \vartriangleleft R$ iff $I - I \subseteq I$ and $R.I \subseteq I$, $I.R \subseteq R$ (ideal)
(vii) $H \triangleleft G$ iff $aH = Ha$, $\forall a$ iff $aH \subseteq Hb$, $\forall a, \exists b$.

3. Cyclic Stuff

(a) (i) Let $G = < a >$ be cyclic with $O(G) = n = gh$.
(ii) \exists exactly one subgroup H_h of order h
(iii) $H_h = < a^{n/h} > = < a^g >$ is the only subgroup of order h in G
(iv) H_h contains all elements of order h in G
(v) These elements of order h are precisely the generators for H_h.

They are $\text{gen}(H_h) = \{ b; b \in G, O(b) = h \} = \{ (a^g)^k; (h, k) = 1 \}$.

(vi) Their number is $\#(\{ b; O(b) = h \} = \phi(h)$.

4. Permutations.

(a) Let C, C_i be cycles with parity $\text{par}(C), \text{par}(C_i)$:
(i) $O(C) = \text{its length}$
(ii) $O(C) = k \Rightarrow \text{par}(C) = \text{par}(k-1)$
(iii) For disjoint cycles: $O(C_1..C_k) = LCM[O(C_i)]$.
(iv) If $a^j = (i_1, i_2, ..., i_r)$, then $O(a) = r$.

5. Cosets
(i) $O(aH)|O(a)$
(ii) $p|O(G) \Rightarrow p = O(x), \exists x$. (Cauchy)

6. $\mathbb{Z}_m, \mathbb{Z}_n^\times$
(i) $a^{\phi(n)} \equiv 1 \mod n$ ($a_n = 1$ (Euler)
(ii) $a^{\phi-1} \equiv 1 \mod p$ ($a_p = 1$ (Fermat)

7. Direct Sums
(i) $O(G) = \prod O(G_i)$.
(ii) $O(a_1, ..., a_n) = LCM(O(a_i))$
(iii) $O(G_i)$ is cyclic iff G_i cyclic and $(O(G_i), O(G_j)) = 1$.

8. First Isomorphism Theorems
(i) If $f : G \to G'$ is a group homomorphism, then $G/\ker(f) \cong f(G)$
(ii) If $f : R \to R'$ is a ring homomorphism, then $R/\ker(f) \cong f(R)$
Here is a nesting of rings:

\[
\text{commutative rings}
\]

\[
\text{field \ ID}
\]

\[
\text{rings with 1}
\]

\[\text{Lord of the Rings}\]

9. (i) A finite ID is a field
 (ii) \(\mathbb{Z}_n \) is a field iff \(n \) is prime iff \(\mathbb{Z}_n \) is an ID
 (iii) If \(D \) is an ID then so is \(D[x] \)

10. **Left/Right Evaluation**
 \[a \in R, \ f(x) \in R[x]: \]
 \[f_r(a) = \sum_{i=0}^{n} f_i a^i, \quad f_l(a) = \sum_{i=0}^{n} a^i f_i \]
 \[(f + g)_r(a) = f_r(a) + g_r(a). \] If \(R \) is commutative \((f,g)(a) = f(a)g(a) \)

11. Over an ID,
 \[f(x)g(x) = 0(x) \text{ with } f \neq 0 \Rightarrow g = 0. \]
 Over any \(R \),
 \[f(x)g(x) = 0(x) \text{ with } f \text{ regular } \Rightarrow g = 0. \]

12. **NC Division Algorithm in \(R[x] \)**
 Let \(f(x) = \sum_{i=0}^{n} f_i x^i \) and \(g(x) = \sum_{i=0}^{m} g_i x^i \),
 with \(n = \partial(f) > \partial(g) = m \) and \(g(x) \) regular, that is, \(g_m \) a unit in \(R \). Then
 \[f(x) = q_R(x)g(x) + r_R(x) \]
 and
 \[f(x) = g(x)q_L(x) + r_L(x), \]
 where \(q_R(q_L) \) is the right(left) quotient, and \(r_R(r_L) \) is the right(left) remainder of \(f \) after division by \(g \). Both are unique!
 Moreover either \(r_R(x) = 0(x) \) or \(\partial(r_R) < \partial(g) \). Likewise either \(r_L(x) = 0(x) \) or \(\partial(r_L) < \partial(g) \).

13. **Remainder (Bezout) Theorem**
 \[f(x) = q_R(x)(x-a) + f_R(a) \]
 \[f(x) = (x-a)q_L(x) + f_L(a). \]
 \((x-a)|_L f(x) \iff f_L(a) = 0 \)
 \((x-a)|_R f(x) \iff f_R(a) = 0 \)

14. If \(R \) is commutative with 1, then
 \[f(a) = 0 (\text{i.e. a is a root}) \iff (x-a)|f(x) \]

15. Over a field \(\mathbb{F} \), if \(\partial(f(x)) = n \), then \(f \) has at most \(n \) distinct roots. But \(x^2 - 1 \) has 4 roots over \(\mathbb{Z}_8 \)!

16. A non-unit \(a \) in \(R \) is irreducible if \(a = bc \) implies \(b \) or \(c \) is a unit.
 In \(\mathbb{F}[x] \), \(f(x) \) is reducible iff \(f(x) = g(x)h(x) \)
 with \(\partial(g), \partial(h) < \partial(f) \)

17. Over a field if \(\partial(f) \leq 3 \) then \(f(x) \) is irreducible if it has no roots