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ABSTRACT

Air pollutant emission inventories are a vital component of environmental decision-making.
Errors in emission factor estimation can lead to errors in emission inventory estimation.
Potential sources of error include unaccounted for variability and uncertainty.  Variability refers
to diversity over time or space.  Uncertainty is a lack of knowledge about the true value of a
quantity.  Probability distribution models can be used to describe variability in a data set and as a
starting point for characterizing uncertainty, such as for mean values.  Mixture distributions have
the potential to be useful in the quantification of variability and uncertainty because they can
improve the goodness of fit to a dataset compared to the use of a single parametric distribution.
In this paper, parameter estimation of mixture distributions is discussed.  An approach for
quantifying the variability and uncertainty based on mixture distributions by using Bootstrap
simulation is developed.  An emission factor case study based upon NOx emissions from coal-
fired tangential boilers with low NOx burners and overfire air is used to illustrate the method.
Results from the use of single parametric distributions are compared with results from the use of
a mixture distribution.  The case study results indicate that a mixture lognormal distribution is a
better fit to the selected case compared to single distributions.  Furthermore, the estimate of the
range of uncertainty in the mean is narrower with the mixture distribution than with the single
component distribution, indicating that the mixture distribution has the potential to yield more
"efficient" statistical estimates.  This project is one component of a larger effort aimed at
developing improved methods for characterizing uncertainty in emission inventories.

Keywords:  Variability, uncertainty, mixture distribution, bootstrap simulation,
                     parameter  estimation
.

1.0 INTRODUCTION

Air pollutant emission inventories are a vital component of environmental decision-making.  In
practice, emission inventories are obtained by multiplying an emission factor (e.g., grams of
pollutant per unit of product produced) with an activity factor (e.g., number of units of product
produced in one year) to obtain total emissions for each emission source category, and then by
summing emissions over all source categories.  Emission factors are typically assumed to be



2

representative of the average emission rate from a population of pollutant sources in a specific
category for a given time period 1, however, there may be uncertainty in the population average
emissions because of random sampling error, measurement errors, or possibly because the
sample from which the emission factor was developed was not a representative sample.  These
errors in the emission factor or activity factor can lead to errors in emission inventory estimation.
Errors in emission inventories may have an adverse impact on decision making regarding air
quality management.  For example, if resources are mistakenly devoted to reduce emissions for a
source category where emissions are overestimated, or if resources are not applied to reduce
emissions to a source category where emissions are under-estimated, then air quality objectives
cannot be achieved in an efficient and cost-effective manner.

1.1 Variability and Uncertainty

In this paper, we focus primarily on evaluation of uncertainty in emission factors, because these
factors are a key input to emission inventories.  Emission factors are often reported as single
numbers.  However, in reality, emission rates vary from one specific facility to another within a
given source category, and even vary at a single facility from one time to another.  The
variability in emissions is observable based upon measurements made at multiple facilities, or
based upon repeated measurements at a single facility. Variability refers to heterogeneity across
different elements of a population over time or space.  For example, emissions may vary from
one power plant to another (inter-plant variability) because of differences in design and operating
conditions.  Moreover, emissions may vary for a single plant over time (intra-plant variability)
because of temporal changes in feedstock composition or operating conditions (e.g., fuel to air
ratio, furnace temperature, etc.). Variability can be represented by a frequency distribution
showing the variation in a characteristic of interest over time, space.2

Uncertainty is a lack of knowledge about the true value of a quantity. Uncertainty in emissions
are typically attributable to:  (1) random measurement errors (lack of precision); (2) systematic
errors (bias or lack of “accuracy”) such as would be caused by imprecise calibration or use of
surrogate data; (3) lack of empirical basis such as would occur when measurements have not
been taken or when estimating emissions for a future source; and (4) human error, such as
random mistakes in entering or processing data.  For example, there may be uncertainty
regarding the true average emission rate for a source category.  Uncertainty can be quantified as
a probability distribution representing the likelihood that the unknown quantity falls within a
given range of values.2

1.2 Increasing Demand for Probabilistic Analysis

The use of quantitative methods for dealing with variability and uncertainty is becoming more
widely recognized and recommended for environmental modeling and assessment applications.
For example, the National Research Council recently released a report on mobile source
emissions estimation that calls for new efforts to quantify uncertainty in emissions.3

Quantification of variability and uncertainty has become widely accepted in human health risk
assessment.  The U.S. Environmental Protection Agency (US EPA), for example, has sponsored
workshops regarding Monte Carlo simulation methods, has developed a guideline document on
Monte Carlo methods and has included guidance regarding probabilistic analysis in its most
recent draft of Risk Assessment Guidance for Superfund.4, 5, 6  In addition, there is a growing
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track record of the demonstrated use of quantitative methods for characterizing variability and
uncertainty applied to emission inventories.  There have been a number of projects aimed at
quantifying variability and uncertainty in highway vehicle emissions, including uncertainty
estimates associated with the Mobile5a emission factor model and with the EMFAC emission
factor model used in California.1, 3, 8  There have been a number of efforts aimed at probabilistic
analysis of various other emission sources, including power plants, non-road mobile sources, and
natural gas-fired engines.7, 8, 9, 10   One of the recommendations of the Emission Inventory
Improvement Program (EIIP) of the US EPA is to encourage the use of quantitative methods to
characterize variability and uncertainties in emission inventories.11

1.3 Importance of Input Assumptions in Probabilistic Analysis

A widely accepted method for uncertainty analysis is to identify inputs to a model or calculation
which are known to have uncertainties, and to quantify the uncertainties in each such input using
a probability distribution model.  Methods for developing input distributions for model inputs,
propagating distributions through models, and analyzing the probabilistic results for model
outputs, are well-described elsewhere.12, 13

In this paper, we focus on one typical situation and challenge encountered when trying to
represent an emission inventory input with a probability distribution.  Parametric distributions
are a compact means for representing either variability or uncertainty in a quantity.  A parametric
distribution is described by a specific type of distribution, represented by a mathematical
equation, and the parameters of the distribution.  The parameters are estimated based upon a
random sample of data, and the goodness-of-fit of the distribution may be evaluated using a
variety of techniques, ranging from visualization methods to statistical tests.12

1.4 Benefits of Mixture Distributions

While it is possible to use empirical representations of the distribution of available data, rather
than parametric distributions, there are some shortcomings to empirical distributions.  An
empirical distribution may be thought of as a step-function in which each data point is assigned
equal probability.  No probability is assigned to any interpolated values between observed data,
nor is any probability assigned to values below the minimum data point or above the maximum
data point.  Therefore, analyses based upon empirical distributions are constrained to the range of
observed data, even though it is typically the case that, with more measurements, values lower
than the minimum data point or higher than the maximum data point would likely be obtained.
The use of parametric distributions allows for interpolation within the range of observed data and
for extrapolations beyond the range of observed data to represent the tails of the distribution.  As
concluded in an expert workshop convened by the U.S. EPA in 1998, the choice of empirical
versus parametric distributions is not inherently a matter of right or wrong, but more a matter of
preference of the analyst.4  In this work, the preference is for use of parametric distributions. The
specification of a probability distribution model for a model input is an essential step to
quantitatively characterizing variability and uncertainty.  In previous studies, single component
distribution models such as the Normal or Lognormal distribution are often used to describe
variability in an emission factor or activity factor.  However, in practice, some single component
distributions often cannot well describe the variation in a quantity or are not good fits to a
dataset.  Because the accuracy of quantifying variability and uncertainty in part depends on the
goodness of fit of the distributions with respect to the available data, the use of single
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distributions that are poor fits to data will lead to bias in the quantification of variability and
uncertainty.  However, in these situations, an alternative is to use a finite mixture of
distributions.  A mixture distribution is comprised of two or one component distributions that are
each weighted.  Typically, a mixture distribution will produce a better fit to a data set than a
single component distribution, because there are more parameters in the mixture distribution than
the single component case.  With an improved fit, in most cases there will also be an
improvement in the characterization of both variability and uncertainty.

1.5 Experience with Mixture Distributions in Environmental Analysis

Mixture distributions have been extensively used in a wide variety of important practical
situations because they provide a powerful way to extend common parametric families of
distributions to fit datasets not adequately fit by single common parametric distributions.
Mixture models have been used in the physical, chemical, social science, biological and other
fields.  As examples, Hariris 14 applied mixture distributions to modeling crime and justice data,
Kanji 15 described wind shear data using mixture distributions.  In human exposure and risk
assessment, David E. Burmaster 16 used mixture lognormal models to re-analyze data set
collected by the U.S. EPA for the concentration of Radon222 in drinking water supplied from
ground water, and found that the mixture model yielded a high-fidelity fit to the data not
achievable with any single parameter distributions.

1.6 Quantification of Uncertainty in Statistics Estimated Based Upon
Mixture Distributions

Frey and Rhodes have presented a two-dimensional probabilistic modeling framework for
simultaneously quantifying variability and uncertainty in the context of emissions estimation by
using bootstrap simulation7,17.  However, these studies are focused on the use of single
component distributions to represent variability in model inputs.  The general framework for
quantification of variability and uncertainty as presented by Frey and Rhodes is adopted here.
However, the approach is extended to include mixture distributions as one method for
representing variability in a model input.

Because a mixture distribution has a more complicated mathematical form and more parameters
then a single component distribution, the process of parameter estimation is typically more
challenging.  For example, there are often no analytic parameter estimators available for any
mixture distributions.  Therefore, there are some important differences in the quantification of
variability and uncertainty when comparing the use of a single distribution and mixture
distributions. However, there is little study on quantification of uncertainty in statistics, such as
the mean, based on mixture distributions.

1.7 Purpose of this Paper

The purpose of this paper is to:  (1) discuss parameter estimation of mixture distribution models;
(2) demonstrate the methodology for the quantification of variability using mixture distributions;
(3) demonstrate the methodology for quantification of uncertainty in statistics inferred from the
mixture distribution, such as the mean; (4) illustrate the methods using a case study; and (5)
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comparatively analyze the results from single distribution-based estimates and the mixture
distribution-based estimates.

2.0 METHODOLOGY

In this section, methods for fitting mixture distributions to data are presented.  In addition,
methods for quantifying uncertainty in statistics estimated based upon the mixture distribution
are discussed.

2.1 Mixture Distributions

According to the definition from Titterington et al.18, a mixture model for a random variable or
vector, x, takes values in a sample space and can be represented by a probability density function
of the form:

Equation 1.

With

And

Where
     f(x):    Probability density function for  the mixture model
     fj(x):   Probability density function (PDF) for the jth component of the mixture.
     wj :     The mixing weight for the jth component of the mixture

Thus, Equation (1) describes a mixture distribution which has a total of k components.  Each
component is itself a probability distribution.  Each component of the distribution has a weight of
greater than zero and less than one.  For example, a mixture distribution might be comprised of
three component distributions, in which the first component has a weight of 0.2, the second has a
weight of 0.3, and third has a weight of 0.5.  This means that, for a large number of samples,
approximately 20 percent of the samples would be obtained from the first component, 30 percent
would be obtained from the second component, and 50 percent would be obtained from the third
component.

In most situations, the components of the mixture, fj(x), have specified parametric forms:

Equation 2.
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Where θj denotes the vector of parameters in the probability density function fj(x).  For example,
the Normal distribution is a parametric distribution, with parameters of mean and standard
deviation.  Therefore, the vector of parameters in this case would be the mean and the standard
deviation.  For the Gamma distribution, there is a scale parameter and a shape parameter, which
comprise the vector of parameters.

The simplest case of a mixture distribution is one that has only two components.  A mixture
model with two components can be expressed in the following form:

Equation 3.

                 )x(f)w1()x(wf)x(f 21 −+=

      with  0 < w < 1.

A mixture distribution comprised of two components, each of which is a two-parameter
distribution, will have a total of five parameters.  For example, a mixture of two lognormal
distributions will have a weight parameter, a logarithmic mean and standard deviation for the
first component, and a logarithmic mean and standard deviation for the second component.

In this paper, we will focus on discussion of mixture distributions with two components as a
means for quantifying variability in a dataset, and the application of bootstrap simulation as a
means for quantifying uncertainty in statistics estimated based upon the mixture.  Although the
analysis here focused on two component mixtures, the method introduced here can be easily
expanded to mixture models with more than two components.

2.2 Parameter Estimation of Mixture Distributions

Many methods have been devised and used for estimating the parameters of a mixture
distributions including, among others, Pearson’s method of matching moments, formal
maximum likelihood estimation (MLE) approaches, and informal graphical techniques.   The
method of matching moments has long been disfavored because of its statistical inefficiency
relative to the method of MLE.  An efficient statistical estimation method is one that yields a
relatively narrow confidence interval for the estimated statistics. In addition, an important
problem in the method of matching moments is based on the assumption that the components in
a mixture model, or at least some useful statistics associated with them, are known when
estimating the parameters in a mixture models.19, 20  However, the assumption cannot be met in
most cases.

With the advent of high-speed computers, there has been more interest in recent years in using
likelihood estimation for the parameters in a mixture distribution.  Therefore, MLE will be
considered as the preferred method for estimating parameters in a mixture distribution in this
paper.  The general idea behind MLE is to choose values of the parameters of the fitted mixture
distribution so that the likelihood that the observed data is a sample from the fitted distribution is
maximized.  The likelihood is calculated by evaluating the probability density function for each
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observed data point and multiplying the results.  Alternatively, and more commonly, the log-
transformed version of the likelihood function is used, which is based upon the sum of the
natural log of the probability density evaluated for each data point.  The general idea is to choose
the estimators of the parameters of the distribution so as to make the probability of the sample a
maximum.  The MLE parameter estimators can be obtained by finding the maximum of a log-
likelihood function.

The log-likelihood function of a univariate (describing one data set) mixture distribution is given
by:

Equation 4.

where

                           n,  the number of data points
                           c,  the number of components in a mixture distribution
                           L, Log-likelihood function
              jj ,σµ , the parameters in the jth component in a mixture distribution

There are three approaches that can be used to find the maximum of Equation (4) and, hence,
obtain the parameter estimates of a mixture distribution. One is the application of the
Expectation-Maximization (EM) algorithm, suggested by Dempster et al..21   The EM algorithm
has the advantage of reliable global convergence, low cost per iteration, economy of storage and
ease of programming; however, its convergence can be very slow in simple problems which are
often encountered in practice,19 and its results are strongly depend upon the initial guesses
assumed for the parameters.20  The second approach is the Newton-Raphson iterative scheme.
This scheme requires a calculation of the inversion of the matrix of second derivatives of the log-
likelihood function, which is complicated and must be done separately for each combination of
parametric distributions assumed in a mixture (e.g., Normal, Lognormal, Gamma, Weibull)
thereby limiting general applicability.19, 20  The third approach is to use nonlinear optimization
methods to directly maximize the log-likelihood function by finding optimal values of the
parameters.  In this paper, nonlinear optimization was chosen to estimate the parameters of a
mixture distribution due to its efficiency and wide use.

For a mixture of two lognormal distributions, the following optimization problem is formulated
for parameter estimation:
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Equation 5.
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Where   n= the number of samples

The optimization problem here is a multidimensional constrained one.  A variety of methods are
available to solve such problems.  These include:  the downhill simplex method; the direction-set
method, of which Powell’s method is the prototype;22  the penalty function method; and others.
In this paper, Powell’s method is employed.  This method is relatively easy to program and
provides good results.

2.3 Quantification of Uncertainty in Statistics Based Upon Mixture
Distributions

Bootstrap simulation, introduced by Efron in 1979, is a numerical technique originally developed
for the purpose of estimating confidence intervals for statistics based upon random sampling
error.23  The confidence interval for a statistic is a measure of the lack of knowledge regarding
the value of the statistic:  the larger (wider) the confidence interval, the greater the uncertainty.
Bootstrap has been widely used in the prediction of confidence intervals for a variety of
statistics.  For example, Angus 24 developed a bootstrap procedure to calculate the upper and
lower confidence bounds for the mean of a log-normal distribution based on complete samples.
Freedman and Peters 25 presented empirical evidence that the bootstrap method provides good
estimates of standard errors of estimates in a multi-equation linear dynamic model.

In quantifying variability and uncertainty using bootstrap simulation, there are two major
aspects.  The first aspect is a procedure for generating random samples from an assumed
population distribution, and the second aspect is the method of forming confidence intervals for
statistics estimated from the random samples 25.  The notion behind bootstrap simulation is to
repeatedly simulate a synthetic data set of the same sample size as the observed data.  The
observed data are used either to specify an empirical probability distribution or as a basis for
fitting a parametric probability distribution.  In either case, the distribution developed based upon
the observed data is assumed to be the best estimate of the true but unknown population
distribution from which the data are but a finite sample.  Numerical methods may be used to
generate random samples from the assumed population distribution.12  In order to simulate
random sampling error, a synthetic data set of the same sample size as the observed data is
simulated, and statistics such as the mean, standard deviation, distribution parameters,
percentiles, and others may be calculated.  The process of simulating synthetic data sets of the
same sample size as the observed data is repeated perhaps 500 to 2,000 times.  Each time, new
values of the statistics are estimated.  Each synthetic data set is referred to as a "bootstrap
sample" and represents one possible realization of observed values from the assumed population
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           Figure 1.  Simplified Flow Diagram for Quantification of Variability and Uncertainty Using
                            Bootstrap Simulation based upon Mixture Distributions

 Bootstrap Simulation

         Two-dimensional simulation
       of uncertainty and variability

Specify a mixture distribution P by estimating parameters from m
observed samples

Generate n (n>=2000) random samples from P, when random number
between 0 and 1 is less than weight w, random sample from the 1st

component of P, otherwise it is from the 2nd component.  The n random
samples form a cumulative density function for the assumed population
distribution F.

For i=1 to B

Generate m random samples from the assumed population distribution F
to form one Bootstrap Sample

Fit a mixture distribution to each Bootstrap Sample by estimating a
Bootstrap Replication of the distribution parameters using nonlinear
optimization

For nU=1 to nU=q

Select one group of distribution parameters to represent one possible
distribution for variability

Simulate nV random samples from the specified distribution to represent
variability

Analyze results to characterize:
- Confidence intervals for CDF
- Sampling distribution for mean, standard deviation, and

parameters
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distribution.  Each statistic estimated based upon a single bootstrap sample is referred to as a
"bootstrap replicate" of the statistic.  The set of 500 to 2,000 bootstrap replicates of a statistic
represent a "sampling distribution".  A sampling distribution is a probability distribution for a
statistic.  From a sampling distribution, a confidence interval can be inferred.

While there are standard numerical methods for drawing random samples from single component
parametric distributions (e.g., see Cullen and Frey 12 for an overview), the methods for drawing
random samples from mixture distributions are more complicated in the context of bootstrap
simulation.  Although it is possible to obtain a single random sample from a mixture distribution
by sampling from a weighted proportion of single component distributions, one of the objectives
in bootstrap simulation is to develop confidence intervals for all statistics, including the
component weights.  Therefore, it is necessary to develop an estimate of the assumed population
distribution in a manner that allows for the weight to vary randomly from one bootstrap sample
to the next.  For this purpose, an empirical distribution is used to represent the assumed
population distribution for the mixture.

As shown in Figure 1, the first step in developing the assumed population distribution is to
generate a large number of random samples using standard simulation methods.  For example,
suppose there is a mixture of two lognormal components, one with a weight of 40 percent and
the other with a weight of 60 percent.  In order to develop a stable estimate of the cumulative
distribution function of this mixture, one may choose to simulate 2,000 or more random values.
Thus, on average 800 values would be simulated from the first component, and on average 1,200
values would be simulated from the second component.  These values would be rank-ordered in
order to describe the cumulative distribution function.  The cumulative distribution function of
the assumed population may be represented by an empirical distribution of these 2,000 values.

Once an empirical representation of the assumed population mixture distribution is available, it is
then possible to randomly sample from it to generate bootstrap samples, as indicated in Figure 1.
From each bootstrap sample, the bootstrap replicates of the component parameter values and of
the weight may be estimated.  For each bootstrap replication of the distribution parameters, the
mean and other statistics may be simulated.  The sampling distributions of these statistics are the
basis for estimating confidence intervals for these statistics.

There are several variations on bootstrap simulation.  Methods commonly studied in the
literature include the percentile, hybrid, bootstrap-t, and Efron’s BCa.

26  The percentile method is
possibly the most frequently used in practice though the theoretical justification for this method
is the weakest;27 however, the intervals obtained from this method are the simplest to use and
explain.  The Hybrid method is justified by asymptotic results for the bootstrap in complicated
models. The bootstrap-t and the BCa intervals are comparable in that both have been
demonstrated theoretically to be “second-order correct” for one-sided intervals in some relatively
simple situations.27 In this paper, for simplicity and because it is the most widely used method in
practice, the percentile method is used.
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     Figure 2. Mixture lognormal distribution fitted to six month average NOx emission factor
                     data for T/LNC1 technology group (n=41).
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3.0 AN ILLUSTRATIVE CASE STUDY:  NOX EMISSION FACTOR FOR
A COAL-FIRED POWER PLANT

The methodology for simulating variability and uncertainty based upon mixture distributions is
demonstrated via a case study of an emission factor for a type of coal-fired power plant.  The
case study is based upon a six month average NOx emission factor for a tangential-fired, coal-
fired boiler with low NOx burners and overfire air.  The specific emission control technology is
referred to as "LNC1".  The dataset is derived from a 1998 US EPA database based on a six
month average.28 This scenario was chosen because: (1) this dataset can not be fit well by any
single distribution; (2) NOx is one of the most important primary pollutants from power plants;
and (3) the number of data points is relatively small (n=41).

3.1 Parameter Estimation for the Fitted Distribution

A mixture distribution with two lognormal components was fit to the case study dataset.  In
addition, some single component distributions, such as Normal, Lognormal and Weibull, were fit
to the data for comparison.  MLE was used to estimate parameters in all cases. The parameter
estimation results for the mixture of two lognormal distributions are:

                    Mixing weight=0.291
                    1st component: Mean of ln(x)=6.071, Standard deviation of ln(x)=0.368
                    2nd component:  Mean of ln(x)=6.249, Standard deviation of ln(x)=0.0898

The fitted distributions are shown in Figures 2 through 5 for the two-component Lognormal
mixture distribution, the single component Normal distribution, the single component Lognormal
distribution, and the single component Weibull distribution, respectively.
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     Figure 3.  Normal distribution fitted to six month average NOx emission factor for
                      T/LNC1 technology group (n=41).
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     Figure 4.  Lognormal distribution fitted to six month average NOx emission factor data
                      for T/LNC1 technology group (n=41).
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     Figure 5.  Weibull distribution fitted to six month average NOx emission factor data for
                       T/LNC1 technology group (n=41).
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    Figure 6.  Probability band for fitted mixture lognormal distribution.
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3.1 Parameter Estimation of Fitted Distribution

Figure 2 displays a good agreement between the fitted mixture distribution and the observed data
set.  In contrast, Figures 3, 4, and 5 display significant disagreements between the fitted Normal,
Lognormal, and Weibull distributions, respectively, and the observed data set.  All three single
component distributions tend to underestimate the data in the lower range of cumulative
probability (approximately from a cumulative probability of 0.2 to 0.5) and to overestimate the
data in an upper range of cumulative probability (e.g., from a cumulative probability of 0.6 to at
least 0.95).  For example, in the case of the Normal distribution, the 25th percentile is
underestimated to be 440 g/GJ compared to an observed value of 470 g/GJ, and the 85th

percentile is overestimated to be 600 g/GJ compared to an observed value of 550 g/GJ.  Similarly
discrepancies exist with the Lognormal and Weibull distributions.  Based upon visual inspection
of the fitted distributions, it appears that the mixture distribution is a substantially better fit
compared to the single component distributions.

3.2 Variability and Uncertainty in the NOx Emission Factor

The results of the two-dimensional bootstrap simulation of the fitted distributions for the NOx

emission factor are shown in Figures 6 through 9 for the two-component Lognormal mixture
distribution, the single component Normal distribution, the single component Lognormal
distribution, and the single component Weibull distribution, respectively.  The dark-gray areas
represent the 50 percent probability band of the results, the light gray areas depict the 90 percent
probability band, and the white areas show the 95 percent probability band. The empirical
distribution of the dataset is plotted with open circles, and the fitted distribution is drawn with a
line.

On average, we expect that five percent of the data, or two of the 41 observed data points, will
fall outside of a 95 percent confidence interval if the data are a random sample from the assumed
population distribution.  In the case of the mixture distribution shown in Figure 6, none of the
data are outside of the 95 percent confidence interval, and only approximately 12 percent of the
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    Figure 7.  Probability band for fitted normal distribution.
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     Figure 8.  Probability band for fitted lognormal distribution
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      Figure 9.  Probability band for fitted normal distribution
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data are outside of the 50 percent confidence interval.  This indicates that the data are highly
consistent with the assumed mixture distribution.  In contrast, 15 percent of the observed data
fall outside the 95 percent confidence interval of the fitted Normal distribution, 22 percent of the
observed data fall outside the 95 percent confidence interval of the fitted Lognormal distribution,
and 49 percent of the observed data fall outside the 95 percent confidence interval of the fitted
Weibull distribution.  The large percentages of data falling outside of the 95 percent confidence
interval in the cases of the Normal, Lognormal, and Weibull distributions suggest that these three
single parametric distributions are not good assumptions regarding the unknown population
distribution, in that they are inconsistent with the observed data.

Figures 6 through 9 also illustrate that there is better agreement in the tails of the mixture
distribution with the observed data than with single component distributions.  This agreement is
important as uncertainty is often large in the tails of the distribution and failure to properly
quantify uncertainty in the tails can potentially lead to biased results.

The Kolmogorov-Smirnov (K-S) test was used to evaluate the goodness of fit of the different
hypothesized distributions with respect to the selected case study datasets in this paper.  K-S test
statistics for the different fitted distribution are:  0.06 for the mixture Lognormal distribution,
0.15 for the Normal distribution, 0.19 for the Lognormal distribution and 0.15 for the Weibull
distribution.  At a significant level of 0.05, the critical value of K-S test statistic is 0.21 (n=41).
Thus, all of the hypothesized distributions in this paper can pass the K-S test. However, the
mixture lognormal distribution has the smallest discrepancy in the estimated cumulative
probability, as indicated by the smallest value of the K-S statistic.

A limitation of goodness-of-fit tests is that they often do not have statistical power when used in
situation with small sample size, such as in this case.  However, in evaluating both the graphical
representation of the fitted distributions and the values of the K-S statistic, it appears that the
mixture distribution is a better fit than the single component distributions.

It is typically the case that the confidence interval for a positively skewed fitted single
component distribution is widest at the upper percentiles of the distribution.  However, in the
case of the fitted mixture distribution, there is also a widening of the confidence interval at a
cumulative probability between approximately 0.05 and 0.40.  Table 1 shows estimates of
uncertainty in the parameters of the fitted mixture distribution.  The 95 confidence interval of
weight parameter is from 0.045 to 0.553.   The range of uncertainty in the weight parameter
causes the ‘bulge’ in the confidence interval of the fitted mixture distribution.

        Table 1.   Uncertainty of estimated parameters of the fitted mixture lognormal
             Distribution

 Parameter 2.5th   Percentile Mean 97.5th Percentile

Weight 0.045 0.236 0.553
µ1 5.569 5.922 6.233
σ1 0.006 0.233 0.474
µ2 6.218 6.259 6.309
σ2 0.047 0.097 0.190
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3.3 Uncertainty in the Mean NOx Emission Factor

Table 2 summarizes results for uncertainty in the mean for the four fitted distributions considered
in the case study.  As shown in the table, there is some variation in the estimates of 95 percent
confidence interval of the mean depending upon which distribution was fit to the observed data.
The mixture distribution is the most accurate of the four cases shown. The estimated mean values
are similar for all four cases; however, the confidence intervals for the mean differ among the
four cases.  In particular, the 95 percent confidence interval for the mean is narrowest for the
case of the mixture distribution, with a range from -6.5 percent to +6.4 percent of the estimated
mean value, or from 471 gram/GJ fuel input to 536 gram/GJ fuel input.  In contrast, the width of
the estimated confidence interval is as much as 30 percent wider based upon the single
component distributions, as in the case of the Weibull distribution.

 Table 2.  Comparison of Selected Statistics of the 95 Percent Confidence Interval for the
                 Mean Based Upon a Mixture Distribution and Three Single Component Parametric
                 Distributions.

Distribution
Types

Mean
Lower 2.5th

Confidence
Level

Upper 97.5th

Confidence
Level

Relative Uncertainty in
Mean

(-) %           (+) %
Lognormal -
Lognormal

503.4 470.9 535.6 -6.5 6.4

Normal 505.4 468.7 541.0 -7.3 7.0
Lognormal 503.0 461.2 538.4 -8.3 7.0

Weibull 500.0 457.0 541.9 -8.6 8.4

* Negative Random Error= (2.5th Percentile –Mean)/Mean
   Positive Random Error=(97.5th Percentile –Mean)/Mean

4.0 DISCUSSION

In the case study, a mixture lognormal distribution with two components was used to
demonstrate the methodology of quantification of variability and uncertainty using mixture
distributions. However, the methodology introduced in this paper can be easily extended to other
mixture models or more components.  The parameter estimation method, based upon nonlinear
optimization, can be extended to include more components.  Similarly, the numerical simulation
method for characterizing variability and uncertainty can be extended to more components.
However, even though more components may improve the fit to a particular data set,
complications may arise if a larger number of parameters are used.  For example, while a two-
component mixture of two-parameter distributions has a total of five parameters, a three-
component mixture would have a total of eight.  If the number of parameters becomes large with
respect to the number of available data points, improvements in fit may arise spuriously because
of over-fitting.  In addition, it is possible that numerical simulation problems will arise in
attempting non-linear optimization with a large number of parameters.  While it is clear that a
two-parameter mixture can offer substantial benefits compared to a single component
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distribution, in terms of improved fit, it is likely that the marginal improvement in fit will
diminish as more and more components are added to the mixture.

The use of five parameters instead of two parameters in the case of the two-component mixture
versus the single component distributions has an impact on the confidence interval of the fitted
distribution.  In particularly, the weighting parameter is a source of uncertainty as reflected in the
confidence interval for the mixture distribution.  There appears to be a "bulge" in the confidence
interval in the region of cumulative probability representing the inflection point between one
component of the mixture and the other component of the mixture.  Because the weight
parameter is itself a random variable, there is uncertainty regarding where the inflection point
between the components should be, leading to a widening of the confidence interval.  On the
other hand, the mixture distribution produced an excellent fit to the data, such that nearly all of
the data were enclosed by the 50 percent confidence band of the fitted distribution.  Thus, there
is a clear trade-off between improved fit between the central tendency of the fitted distribution
versus the observed data and the width of the confidence interval of the fitted distribution, at
least for some statistics, as the number of parameters increases. As Leoroux 29 points out, the
elimination of unnecessary components in a mixture might lead to more precise estimates of the
parameters, and, by extension, of other statistics.  Thus, it is important to have as many
components in the mixture as needed to obtain a reasonable fit to the data, but not to have too
many.

Even though there is a "bulge" in the confidence interval of the fitted mixture distribution
associated with the weight parameter, the confidence interval can be relatively narrow for other
portions of the cumulative distribution and for some statistics.  In the case study, the narrowest
confidence interval for the mean was obtained from the mixture distribution.  This result
indicates that, in this case, the mixture distribution yielded the most statistically efficient
estimate of the sampling distribution of the mean.  The results would vary in other cases.  For
example, if the weight parameter led to an inflection point at a location similar to the mean, the
confidence interval for the mean could be comparatively wide.

5.0 CONCLUSION

This paper demonstrates a method for improving the characterization of variability and
uncertainty in environmental data and models based upon the use of mixture distributions.  A
method for fitting mixture distributions to data using MLE and nonlinear optimization was
successfully applied to a case study for an actual data set regarding NOx emissions for a selected
type of coal-fired power plant.  Numerical methods based upon bootstrap simulation were
successfully applied to characterize uncertainty in statistics estimated from the fitted distribution.
The results from the use of a mixture distribution were compared to those from more commonly
used single component distributions.  While there is some effect on uncertainty estimates
associated with the increased number of parameters of the mixture, overall the fit to the observed
data was substantially better.  In the example case study, the confidence interval for the mean
based upon the mixture was narrower than that obtained based upon other distributions,
indicating that mixtures can lead to more efficient estimates of uncertainty.
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As noted in the discussion, the results from the case study are not generalizable to all data sets.
For example, it is possible to have situations in which the uncertainty in the mean could be larger
based upon a mixture than based upon a single component distribution.  However, a key benefit
of mixture distributions is greater fidelity to the original data set with respect to the shape of the
assumed population distribution, even though the range of uncertainty can be influenced by the
presence of additional parameters.

As part of future work, the method for characterizing variability and uncertainty will be
evaluated in a series of systematic case studies, in which the effects of sample size, weights, and
amount of separation between the components will be evaluated.  In the longer term, other
methods for fitting mixture distributions to data, and for simulating uncertainty, could be
evaluated or developed.

In summary, the use of mixture distributions is a promising method for improving the fit of
distributions to data and for obtaining improved estimates of uncertainty in statistics estimated
from the fitted distribution.  The use of mixture distributions should be considered and evaluated
in situations in which single component distributions are unable to provide acceptable fits to the
data, or in situations in which it is known that the data arise from a mixture of distributions.  In
this work, we have successfully demonstrated a method for fitting mixture distributions to data
and for making inferences regarding uncertainty.

The characterization of uncertainty in emission factors and other components of emission
inventories, as well as in environmental modeling in general, is an important means for
conveying to analysts and decision-makers quantitative information regarding the comparative
strengths and limitations of inputs to an analysis.  Those inputs which contribute most to
uncertainty in environmental decisions, and which are amenable to additional study, should be
identified and targeted for additional data collection or research to reduce uncertainty.  The
methods presented in this paper, therefore, are intended to support a rational approach to
environmental decision-making.
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