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ABSTRACT

Quantitative methods for characterizing both variability and uncertainty are applied to case
studies of emission factors for stationary natural gas-fueled internal combustion engines.  NOx

and Total Organic Carbon (TOC) emission data sets for lean burn engines were analyzed.  Data
were available for uncontrolled engines and for engines with pre-combustion chamber (PCC) and
"clean burn" NOx control approaches.  For each data set, parametric probability distributions
were fit to the data using maximum likelihood estimation to represent inter-engine variability in
emissions.  Bootstrap simulation methods were used to quantify uncertainty in the fitted
distribution and uncertainty in the mean emission factor.  Some methodological challenges were
encountered in analyzing the data.  For example, in one instance, only five data points were
available, with each data point representing a different market share.  Therefore, an approach
was developed in which a parametric distribution was fitted to population-weighted data.  The
range of uncertainty in mean emission factors ranges from approximately plus or minus 10
percent to as much as minus 60 percent to plus 80 percent, depending on the pollutant, control
technology, and nature of the available data.  The wide range of uncertainty in some emission
factors emphasizes the importance of recognizing an accounting for uncertainty in emissions
estimates.  The skewness in some uncertainty estimates illustrates the importance of using a
numerical simulation approach that does not impose restrictive symmetry assumptions on the
confidence interval for the mean.  In this paper, we briefly present the probabilistic analysis
method, the data sets, the results of the analyses, and key findings and recommendations.
Recommendations include reporting requirements for emission factor data.

1.0 INTRODUCTION

This paper focuses on demonstrating the use of quantitative methods for characterizing
variability and uncertainty applied to emission factors.  Emission factors are a key input to
emission inventories.  Emission inventories, in turn, are widely used for regulatory and air
quality management purposes.  However, the uncertainty in emission factors, and in emission
inventories, is typically not known.  Therefore, it is not known, in many cases, how robust
regulatory or management decisions are with respect to uncertainty.  For example, emission
inventories are used to evaluate statewide compliance with emissions budgets, to assess
emissions trends, for various regulatory analyses associated with permitting of new sources, to



assess baseline and trends in air quality using air quality models, and for other applications.  If
unquantified errors or uncertainties exist in the emission factors and, hence, the emission
inventories, then it is likely that the significance of trends, of comparisons of emissions before
and after control strategies are implemented, and of air quality predictions using air quality
models, are misestimated or not robust with respect to uncertainty.  A regulatory or air quality
management decision would be robust to uncertainty if the outcome of the decision led to net
benefits even though the true value of emissions is not known precisely.  In contrast, if
management decisions are based upon point estimates of emissions that are biased, or if the
range of uncertainty in emissions is much larger than any predicted change in emissions resulting
from an air quality management strategy, then the decision-making process for developing
management strategies will be ineffective.  Because air quality management involves high
stakes, such as public health, money, and other impacts, it is important that these decisions be
based upon the best information available, and that they be robust to uncertainty. This paper
focuses on one of the fundamental starting points for characterizing uncertainty in emission
inventories, which is the emission factor.  The case study application is stationary natural gas-
fueled internal combustion engines.

1.1 Variability and Uncertainty

 For a given emission source category, there is both variability and uncertainty in emissions.
Emissions vary from one specific source to another (e.g., one engine to another) within a source
category because of variations in design, feedstock compositions, ambient conditions, and other
operating conditions.  For a given specific source (e.g., a particular engine), emissions vary over
time because of differences in feedstock composition, ambient conditions, other operating
characteristics, and maintenance and repair.  Thus, there is typically some inherent variation in
emissions that is revealed by measurements on multiple specific emission sources or by repeated
measurements of the same emission source.
 

 For the purposes of developing emission factors, we are typically interested in knowing the
average emission rate for a particular averaging time.  For example, for purposes of developing
an estimate of annual emissions, an annual average emission factor is needed.  For purposes of
developing hourly estimates of emissions for input to a photochemical air quality model, hourly
average estimates of emissions would be needed. However, data are often not available to assess
the variation in average emission factors for any arbitrary averaging time.  Instead, data are often
obtained based upon short term measurements that may not be directly relevant to the averaging
time needed for an emission factor estimate.
 

 Uncertainty refers to lack of knowledge regarding the true but unknown value of a quantity, such
as the true but unknown population average emission factor for a particular source category.  The
average emission factor, even if for the correct averaging time needed for a particular type of
analysis, is subject to uncertainty for several possible reasons:  (1) random sampling error; (2)
measurement errors; (3) non-representativeness of available data; and/or (4) lack of information.
There is also the possibility that there are data entry mistakes.  In this paper, the main focus is on
quantification of random sampling error, which is the statistical random fluctuation in any
statistic estimated from a finite random sample of data.  Any statistic estimated from a random
sample of data is itself a random variable.  For example, the sample mean is a random variable.
The probability distribution for a statistic is referred to as the sampling distribution.  The



sampling distribution can be used to develop confidence intervals for a statistic.  In this paper,
we use sampling distributions as a method for quantifying uncertainty associated with random
sampling error.

1.2 Estimation of Uncertainty in Emission Factors

Current practice in emission inventory work is typically to ignore uncertainty.  Uncertainties in
emission factors and emission inventories are typically not reported.  As a surrogate for
uncertainty estimates, some emission factors are accompanied by data quality ratings, such as
those reported in AP-42.1   “A” to “E” qualitative ratings are assigned to emission factors as a
indicator of their quality.  A method for qualitatively rating emission inventories, known as the
Data Attribute Rating System (DARS) has been developed by EPA.2  Qualitative ratings of
emission factors and emission inventories are important.  Some sources of uncertainty are
difficult to quantify, such as non-representativeness of a data set.  Therefore, there will always be
a role for qualitative statements regarding non-quantifiable sources of uncertainty.  However,
qualitative rating systems should be used in combination with quantitative approaches.

There is growing recognition of the importance of quantitative uncertainty analysis in
environmental modeling and assessment.  For example, the U.S. EPA has developed guidelines
for Monte Carlo analysis of uncertainty.3  The National Academy of Sciences has repeatedly
recommended to EPA that quantitative analysis of uncertainty be included in a variety of
applications.4,5

As part of previous and ongoing work, research is underway to develop and demonstrate
improved methods for quantifying uncertainty in emission inventories.  In the area of mobile
source emissions, for example, Kini and Frey developed quantitative estimates of uncertainty
associated with the Mobile5b emission factor model estimates of light duty gasoline vehicle base
emissions and speed-corrected emissions.6  Pollack et al. performed a similar study on
California's EMFAC7G highway vehicle emission factor model.7  Frey et al. revisited the earlier
analysis of Mobile5b emission factor estimates to include uncertainties associated with
temperature corrections.8  Bammi and Frey estimated uncertainty in the emission factors for a
non-road source category of lawn and garden equipment.9  A recent National Research Council
report has recommended that the U.S. Environmental Protection Agency (EPA) and others
"should undertake the necessary measures to conduct quantitative uncertainty analyses of the
mobile source emissions models."4

In the area of power plant emissions, Frey and colleagues have developed uncertainty estimates
for emissions of hazardous air pollutants and for NOx emitted by coal-fired power plants.8,10,11,12

In addition, as part of recent work, methods for quantification of variability and uncertainty have
been developed, evaluated, and demonstrated, including the use of Monte Carlo simulation and
bootstrap simulation.13,14,15

In this paper, quantitative methods for characterizing variability and uncertainty are applied to
the source category of stationary natural gas-fueled internal combustion engines.  These engines
are commonly used, for example, to power natural gas pipeline compressors.  In some airsheds,
such as for Charlotte, NC, this type of emission source is estimated to be a significant contributor
to the total NOx emission inventory.



2.0 OVERVIEW OF METHODS FOR PROBABILISTIC ANALYSIS OF
EMISSION FACTORS

There are a variety of methods for quantification of uncertainty in environmental models,
including analytical methods, approximate analytical methods, and numerical methods.16

Analytical methods work only in a limited number of application areas, and often are not useful
for many practical problems.  Approximation methods, such as those based upon Taylor series
expansions, have the potential for comparatively fast computation times but can suffer from
inaccuracies or biases if models are highly nonlinear and/or if non-symmetric assumptions are
made regarding probability distributions for model inputs.  Numerical methods are typically
more robust in that they can be applied to a wide range of problems without restrictive
assumptions regarding probability distributions assigned to model inputs and for a wide variety
of model formulations.  Thus, in this work, numerical methods are employed.

The basic approach in probabilistic analysis is to quantify uncertainty in the inputs to a model,
propagate the uncertainties through the model to make predictions of uncertainties in model
outputs, and analyze the results.  Using numerical methods, it is possible to specify dependencies
among model inputs (if known) and to analyze simulation results to identify the key sources of
uncertainty in model inputs contributing most to uncertainty in model outputs.  There are a
variety of specific simulation methods available.  In this work, traditional Monte Carlo
simulation is employed.  The Monte Carlo approach was developed by Stanislaw Ulam and John
von Neumann to simulate probabilistic events for military purposes in 1946.17  Monte Carlo
simulation is a numerical method for randomly generating sample values from a specified
population distribution.  The details of how the method works are reported elsewhere.16

 

 This paper focuses on the characterization of variability and uncertainty in emission factors,
which are inputs to emission inventories.  Therefore, in this paper, we focus on methods for
specifying probability distributions for a given model input.  Methods for propagating
uncertainty through models and for analyzing results are described elsewhere.16

2.1 Characterizing Variability in a Data Set

 A first step in characterizing variability in a data set is to obtain all relevant data and assess the
quality of the data.  A judgment must be made that the data are a reasonably representative
sample of the population of interest, and that the data are free of significant errors.  This step is
the same regardless of whether one is developing a point estimate or a probabilistic estimate.
This is the most critical step in the analysis.
 

 A second step is to visualize the data to obtain insight regarding the range, central tendency, and
skewness of the data, and any other noteworthy characteristics.  A method often employed for
this purpose is to plot the data as an empirical cumulative distribution function (CDF).  Methods
for plotting empirical CDFs are described by Cullen and Frey and by Frey et al.16,8

 

 It is convenient to represent a data set with a parametric probability distribution.  While an
empirical CDF is also a valid representation of a data set, the empirical CDF has some
limitations.  In particular, in a strict empirical CDF, each observed data point is assigned an
equal probability, and no probability is assigned to any values other than those actually observed.



Therefore, there is no interpolation among the observed data, and there is no extrapolation
beyond the range of observed data.  The former is not a significant problem, but does tend to lead
to "noisy" results when viewing the CDF of model outputs.  The latter is a significant problem.
Especially for small data sets, the range of sample observations for variability in emissions may
be much narrower than the unknown true range of variability in the population.  If additional
data were to be collected, it is likely that some new observations would be less than the
minimum value of the original sample, or greater than the maximum value of the original
sample.  Parametric probability distributions have an underlying theoretical basis.  To the extent
that the theoretical basis of the parametric distribution is based coincides in some way with the
processes that lead to variation in the observed data, parametric distributions can provide a
plausible means for extrapolating to the unobserved tails of the unknown population distribution.
Parametric distributions also offer an advantage of compactness:  an entire distribution can be
represented by a specific formula for the distribution and by the numerical values of the
parameters of the distribution.  Most commonly used distributions have only two parameters.
 

The investigator’s experience is very important in the selection of a parametric distribution.  A
priori knowledge of the theoretical basis for different distributions, and of the processes leading
to variability in a data set, can aid in identifying candidate distributions for fitting to the data.
For example, the normal distribution arises as a result of unbiased random processes, whereas
Lognormal distributions often arise as a result of mixing or dilution processes.  Theoretical
considerations in the selection of distributions are discussed elsewhere.16  In this study, Normal,
Lognormal, Gamma, and Weibull distributions are considered.

After choosing a candidate parametric distribution, the next step is to estimate its parameters
based upon the observed data.  There are several methods for estimating distribution parameters,
including, for example, probability plots, the method of matching moments, maximum likelihood
estimation (MLE), and others.  No method is necessarily the best one to use in all situations.
However, MLE is considered to be a statistically efficient method and is reasonably robust.16

Therefore, it is used in this work.

2.2 Characterizing Uncertainty

The previous section describes how variability in a data set may be represented by a parametric
distribution.  In this section, a method, based upon bootstrap simulation, for characterizing
uncertainty in any statistic estimated based upon the parametric distribution is presented.18

The objective of bootstrap simulation is to numerically simulate sampling distributions for
statistics.  The main assumption in bootstrap simulation is that the probability distribution
estimated from the observed sample of data is the best estimate of the true but unknown
population distribution.  Given the assumption of an assumed population distribution, the effects
of random sampling from the population distribution are simulated.  Specifically, a synthetic data
set, known as a bootstrap sample, is sampled at random from the assumed population
distribution using Monte Carlo simulation.  The bootstrap sample has the same number of data
points as the original sample.  The values of the samples in the bootstrap sample are one possible
alternative realization of the original data set.  For example, suppose that we have ten
measurements of emissions from ten different engines.  If we were to randomly sample a



different set of ten engines from the same population, we would obtain at least somewhat
different values of emissions.

During bootstrap simulation, a large number of bootstrap samples are simulated, typically 500 to
2,000.  For each bootstrap sample, one or more statistics of interest may be calculated, such as
the mean.  Therefore, there will be, typically, 500 to 2,000 estimates of the mean, representing a
sampling distribution of mean values.  From the sampling distribution, a confidence interval for
the mean can be inferred.  Similarly, sampling distributions and confidence intervals can be
inferred for other statistics, such as the standard deviation, distribution parameters, or percentiles
of the cumulative distribution for variability.  Results of bootstrap simulation are illustrated later
in the paper.

A key advantage of bootstrap simulation for estimation of confidence intervals is that no
restrictive assumptions are required regarding normality, as is required to develop confidence
intervals using common analytical methods.  Thus, bootstrap simulation can be used on a wide
variety of problems.  The confidence intervals represent lack of knowledge regarding the true
values of the statistics being estimated.  The confidence intervals have a given confidence level
(e.g., 95 percent) of enclosing the true but unknown value of the statistic.

3.0 NATURAL GAS-FUELED INTERNAL COMBUSTION ENGINES

 Natural gas-fueled internal combustion engines are commonly used to provide mechanical shaft
power to drive compressors, such as those used in natural gas pipelines.19,20  These engines are
classified based upon three major designs:  (1) 2-cycle lean burn, also referred to as 2-stroke lean
burn (2SLB); (2) 4-stroke lean burn (4SLB); and (3) 4-stroke rich burn (4SRB).  Engines in all of
these categories are spark-ignited.  The capacity of these engines ranges from 50 brake
horsepower (bhp) to 11,000 bhp.  The air-to-fuel mass ratios of lean burn engines are typically
higher than 24:1.  Rich burn engines operate near a stoichiometric air-to-fuel mass ratio of 16:1.
 

 Natural gas-fueled engines typically emit nitrogen oxides (NOx), carbon monoxide (CO), and
hydrocarbons (HC). Control technologies for natural gas-fueled engines are primarily aimed at
reducing NOx emissions.  Parametric controls involve modifying the spark timing of the engine
and/or operating at a leaner air-to-fuel ratio.  Combustion modifications are typically aimed at
improving the mixing of fuel and air and promoting staged combustion.  Examples include clean
burn reciprocating head designs and pre-stratified charge combustion.  Post-combustion controls
include selective catalytic reduction (SCR) for lean burn engines and nonselective catalytic
reduction (NSCR) for rich burn engines.19,20

Emission factors for natural gas-fueled engines have been published by U.S. EPA in AP-42.1

Until recently, emission factors for this source category were based upon an October 1996
update to AP-42.19  However, an update was published in July 2000.20  The July 2000 version is
based upon a different data set than the October 1996 version.  The October 1996 data set
involves market-share weighted data for at least one of the emission factors.  The method for
characterizing variability and uncertainty for such data is slightly different than when data are
equally weighted.  Therefore, to demonstrate a range of methods, both sources of data are
included in this study.  This study focuses on NOx and TOC emission factors, because these two
pollutants are the most significant precursors to tropospheric ozone formation.



3.1 October 1996 Version of Natural Gas-Fueled Engine AP-42 Emission
Factors

In the October 1996 version of AP-42, NOx and TOC emission factors are provided in four
different units: lb/hp-hr; kg/kw-hr; lb/106 Btu and ng/J.  The first two are emissions per unit of
engine output, and the last two are emissions per unit of fuel input.  The units of lb/106 Btu are
used in this study.  The analysis of the October 1996 version is focused upon lean burn engines,
because these engines have high emission rates and are present in an airshed (for Charlotte, NC)
that is the subject of a case study in related work.  The specific emission sources for which
uncertainty in average emission factors were quantified include:  (1) 2SLB uncontrolled engines;
(2) 2-cycle "clean burn" controlled lean burn engines; (3) 2-cycle pre-combustion chamber
controlled lean burn engines; and (4) 4SLB uncontrolled engines.  For other control options,
apparently only one data point was used by EPA to estimate emission factors.21  Therefore, other
control options were not analyzed statistically.

For the 2SLB uncontrolled engines, only average emissions data for each of five manufacturers
were available.  In addition, the market share for each manufacturer, in terms of the percentage
share of installed capacity, was reported.  The data set for this type of engine is given in Table 1.
As another example of an emission factor data set, the data reported to be used by EPA to
calculate the NOx and TOC emission factors for clean burn 2SLB engines are shown in Table 2.
The latter data set is based upon tests done on Copper-Bessemer “Clean Burn” engines.

As a method for verifying whether the data reported in the literature are the complete data set
used to develop the AP-42 emission factors, the average value of the data was calculated and
compared to the AP-42 value.  The weighted average of the uncontolled 2SLB engine emission
data was calculated and is provided in Table 1.  The weighted average is exactly the same as the
AP-42 emission factor in this case.  Similarly, the average values of the data in Table 2 are the
same as the AP-42 emission factors.  Therefore, the data set appears to be exactly the same as
that used by EPA in developing the emission factor.

The uncontrolled engine emission factors were assigned a data quality rating of “A” by EPA
because they judged that the quantity and quality of the original test data were good and
generally well documented, and that the engine types and population profile were known.  The
Clean Burn and Pre-Combustion Chamber controlled engine emission factors were rated as “C,”

Table 1. Emissions data for Uncontrolled Natural-Gas Fueled 2-Stroke Lean Burn Engines21

MAKE
NOx Emissions
(lb/106 BTU)

TOC Emissions
(lb/106 BTU)

Ratio of total installed
capacity (%)

Ajax 1.132 4.318 4
Clark 2.636 1.703 36
CB 3.009 1.164 47
Fairbanks-Morse 0.556 1.220 1
Worthington 2.466 1.618 12
Weighted average 2.710 1.539



based on a judgment that the test data were of “A” quality, but that the amount of data was
limited.21

3.2 July 2000 Version of Natural Gas-Fueled Engine AP-42 Emission
Factors

After the October 1996 version was published, EPA initiated efforts to gather additional
emissions data for combustion sources, including stationary reciprocating internal combustion
engines. EPA decided to base the emission factors for natural gas-fueled engines on original
emissions source test data.22  The July 2000 emission factors are only for uncontrolled engines.
However, the uncontrolled NOx emission factors have been refined by estimating emissions
separately for two different load ranges.  EPA has made publicly available the data used to
develop the new emission factors.  These data are available in a Microsoft Access database at the
EPA TTN web site.23  A summary of the average emission factor calculated from the data base
and of the emission factor reported in AP-42 is given in Table 3.

Two alternative procedures were used to estimate emission factors from the database.  In one
procedure, referred to in Table 3 as "ungrouped", each data point in the database was given equal
weight, even if some of the data represent repeated measurements of the same engine.  In the
other procedure, referred to as "grouped," all data for a single engine were averaged, and only the
average value for each engine was used to calculate an average emission rate.  Of the six
emission factors shown in Table 3, it appears that for two of them (2SLB NOx, both load ranges)
it is possible to exactly recalculate the AP-42 emission factor from the available data using the
"ungrouped" approach.  For both of the TOC emission factors it is possible get a very close
approximation to the AP-42 value using the ungrouped approach.  For the remaining two
emission factors (4SLB NOx, both load ranges), it is not possible to get a reasonable
approximation to the AP-42 value using either approach.

Table 2.  Emission data for Clean Burn Natural-Gas Fueled 2-Stroke Lean Burn Engines21

Data Point
NOx Emission Rate

(lb/106 BTU)
TOC Emission Rate

(lb/106 BTU)
1 0.757 0.984
2 0.670 1.019
3 1.534 0.834
4 0.792 0.979
5 0.757 1.005
6 0.675 1.013
7 0.674 1.027
8 0.669 1.029
9 0.873 0.174
10 0.874 0.180
11 0.901 0.190

Average 0.834 0.767



The emission factors of  the uncontrolled 2SLB engines are assigned a quality rating “A”, and
the emission factors of the uncontrolled 4SLB engines are assigned a quality rating of “B.”
However, no explanations regarding the specific basis for these ratings are provided.

Although it was not possible to reproduce the calculation methods for several of the emission
factors, the available data are used nonetheless to illustrate the methodology for quantifying
uncertainty in emission factors.  This case study can be revisited at a later time when
documentation of the AP-42 emission factors is more complete.

The July 2000 AP-42 NOx emission factors differ from the October 1996 AP-42 NOx emission
factors.  For example, for uncontrolled 2SLB engines, the October 1996 NOx emission factor is
2.71 lb/106 BTU, while the July 2000 emission factor is 3.17 lb/106 BTU for the 90 percent to
105 percent load range.  For the less than 90 percent load range, the July 2000 emission factor is
1.94 lb/106 BTU.  It is not known for what load range the October 1996 data were obtained.
However, it appears that the October 1996 average emission factor is enclosed by the range of

Table 3.  Comparison Between EPA NOx Emissions Database and Documentation of AP-42
Emission Factors for Uncontrolled 2SLB and 4SLB Engines Based Upon July 2000 Version
of AP-42.22

Engine
Type

Pollutant Engine Load

Average Calculated from
Databasea

(lb/106 Btu)

AP-42
Emission

Factor
(lb/106 Btu)

Comments on
Documentationb

90 to 105% 3.17 (ungrouped),
3.05 (grouped)

3.17
34 test data are used
to develop AP-42
emission factor

NOx

< 90% 1.94 (ungrouped),
2.35 (grouped)

1.94
57 test data are used
to develop AP-42
emission factor

2SLB

TOCc
Any load

1.61(ungrouped),
1.49 (grouped)

1.64
24 test data are used
to develop AP-42
emission factor

90 to 105% 2.22 (ungrouped)
3.26 (grouped)

4.08
25 test data are used
to develop AP-42
emission factorNOx

< 90% 0.739 (ungrouped)
1.77 (grouped)

0.847
13 test data are used
to develop AP-42
emission factor

4SLB

TOCc
Any load

1.42(ungrouped),
1.13 (grouped)

1.47
37 test data are used
to develop AP-42
emission factor

a Two average values were calculated from the available data in the database from the EPA TTN Web Site.  The
"Ungrouped" averages involve taking the average of all emissions tests for all engines.  The "Grouped" averages
involve first calculating the average emissions for engines that were tested more than once, and then calculating
the average among all engines.  For example, if we have 25 test data from 10 engines, the ungrouped average is
based upon 25 equally weighted values.  In contrast, the grouped average would be based on the 10 average
values for each different engine.
b The test identification numbers used in the on-line database are documented in Reference 22.
c Emission factors are reported on a TOC basis in AP-42. While, they are reported as Total Hydrocarbons (THC)
in database.20,23



emission factors in the July 2000 version. The comparison of 4-cycle uncontrolled lean burn
engine emission factors is similar.  The October 1996 NOx emission factor of 3.2 lb/106 BTU is
enclosed by the July 2000 values of 4.1 lb/106 BTU for the high load range and 0.85 lb/106 BTU
for the low load range.  The October 1996 TOC emission factors were 1.539 lb/106 BTU for
2SLB engines and 1.261 lb/106 BTU for 4SLB engines. In July 2000 version AP-42, these
emission factors are approximately comparable with values of 1.64 lb/106 BTU for 2SLB
engines and 1.47 lb/106 BTU for 4SLB engines.

4.0 QUANTIFICATION OF VARIABILITY AND UNCERTAINTY IN
EMISSION FACTORS

In this section, variability in the emission factor data sets is represented with parametric
probability distributions.  Uncertainty in the average emission factors is estimated using
bootstrap simulation.  Two sets of case studies are presented.  In the first case study, each data
point is assumed to be an equally likely random sample from the total population of emission
sources.  This type of case study applies to all of the emission factor data except for the October
1996 version uncontrolled 2SLB engine data.  In the latter case, each data point does not have
equal weight.  Therefore, the uncertainty estimation method is modified to attempt to account for
the unequal weights of each data point.

4.1 Equally-Weighted Randomly Sampled Data

In many cases, emission factor data are available for a sample of engines, representing different
manufacturers, engine models, engine ages, applications, etc.  In developing an emission factor,
a judgment is made to group data from various specific engine measurements together because of
similarities in engine design and operation.  For example, expert judgment could be used as a
basis for estimating the market share of each particular make and model of engine.  In the
absence of information, a common default assumption is to assume equal weight among the
available data.  Of course, this assumption could, and is likely to, be wrong.  At the same time,
there may not be an empirical basis to justify other assumptions.  Key assumptions in an analysis
should be evaluated when interpreting the results of the analysis.  Therefore, although equal
weight for each data point is assumed, later this assumption will be critiqued.

Another factor that must be considered is how to handle replicate data.  The available data sets
include, in some cases, repeated measurements on the same engine.  For example, in the case of
the July 2000 data set for uncontrolled NOx emissions from 4SLB engines operated at 90 percent
to 105 percent load, there are 25 data points available from measurements on only 5 engine
models.  Repeated measurements on the same engine provide an indication of intra-engine
variability in emissions.  However, in calculating an emission factor, the objective is to quantify
inter-engine variability in emissions for purposes of estimating the population distribution for
variability within the source category.  Therefore, it is necessary to prepare a data set
representative of inter-engine variability.  The approach taken here is to use an average value for
repeated measurements of an individual engine as the representative emission rate for that
engine, and to analyze the inter-engine variability in which each engine is represented by either
one data point, if only one measurement is available, or the average of the available data, if
repeated measurements are available.



As an example to illustrate the development of an emission factor database, Table 4 summarizes
the NOx emission data for five uncontrolled 4SLB engines operated at 90 to 105 percent load.
However, it appears that the Ingersoll Rand KVS-412 and KVS-12 engines might be the same
engine; they have the same rated capacity and very similar emission factors.  Nonetheless, for the
time being, these are treated separately because they are reported separately in the data base and
there is no evidence in the AP-42 supporting documentation that EPA treated them as the same
engine in developing the AP-42 emission factors.22  In the future, this data set should be revisited
or more thoroughly documented to clarify this point.  Although there are a total of 25
measurements in the database, because the measurements are for only five engines, the effective
sample size is only five.  The variability in emissions for a single engine is less than the
variability in emissions between engines.  For example, the range of variation in emissions for
the Cooper Bessemer LSV-16 engine over four measurements is approximately plus 0.4 lb/106

BTU or minus 0.5 lb/106 BTU from an average of 2.90 lb/106 BTU.  However, the range of
variation when comparing engines is from 0.2 lb/106 BTU to 5.7 lb/106 BTU, or a factor of
nearly 30.  Thus, although there is variability in emissions for an individual engine, the inter-
engine variability is substantially larger.

The inter-engine variability in emissions for the uncontrolled 4SLB engines is shown graphically
in Figure 1.  Of the several types of parametric distributions evaluated, the Weibull distribution
offered the best fit to the five data points.  With only five data points, there are not sufficient data
to perform statistical goodness-of-fit tests.  Bootstrap simulation was used to estimate confidence
intervals for the CDF of the fitted parametric distributions.  With only five data points, the
confidence intervals are relatively wide.  For example, the 95 percent confidence interval for the
median, or 50th percentile of the distribution, is from 1.07 lb/106 BTU to 5.41 lb/106 BTU, which
is nearly as wide as the range of the data.

The mean emission rate calculated from the original data set using groupings by engine is 3.26
lb/106 BTU. The mean emission estimate obtained from the fitted distribution is 3.17 lb/106

BTU.  The difference is because the fitted distribution places less emphasis on larger values of
emissions than the data set, which has two values of relatively high emissions.  The 95 percent
confidence interval for the mean is from 1.36 lb/106 BTU to 5.73 lb/106 BTU, corresponding to a
range of minus 57 percent to plus 81 percent.  The AP-42 emission factor is 4.08 lb/106 BTU.
The mean emission estimate from bootstrap simulation is 22 percent smaller than than the AP-42
value, although the confidence interval encloses the AP-42 value.  However, insufficient
documentation of the AP-42 value is provided to enable more detailed comparisons.

Table 4.  Summary of Emission Test Data Using in July 2000 Version of AP-42 for
Uncontrolled 4SLB Engines Operated at 90 to 105 Percent of Load.

Engine Make and Model

Engine
Size
(hp)

Engine
Load

Range (%)

Number
of

Tests

Range of Test
Results

(lb/106 BTU)

Average
Emissions

(lb/106 BTU)
Caterpillar G339T 850 100 1 2.11 2.11
Cooper-Bessemer LSV-16 4,200 98-99 4 2.41 to 3.28 2.90
Ingersoll Rand KVS-412 2,000 91 2 5.24 to 5.63 5.44
Ingersoll Rand KVS-12 2,000 100 5 4.98 to 6.01 5.65
Waukesha 3521 GL 736 100 13 0.11 to 0.38 0.21



An important characteristic of the confidence intervals of the mean, or of any other statistic,
estimated based upon bootstrap simulation is that they need not be symmetric.  With a very small
data set of only five data points, and with a positive skewness in the data set, the confidence
interval on the mean is expected to be positively skewed.  Therefore, the asymmetry of the
confidence interval for the mean NOx emission factor from 4SLB engines is expected.  Because
of the small number of data points and the wide range of variability of the data, the confidence
interval is expected to be relatively wide, as it is in this case.

Figure 1. Comparison of Empirical Cumulative Distribution of Average Uncontrolled
4-SLB Engine, 90-105% load, NOx Emissions, fitted Weibull distribution, and

Bootstrap Simulation Confidence Intervals, Based Upon July 2000 AP-42 Data.
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Figure 2. Comparison of Empirical Cumulative Distribution of Uncontrolled Waukesha 3521
GL 4SLB Engine, 90-105% load, NOx Emissions, a fitted Weibull distribution for Intra-Engine
Variability and Bootstrap Simulation Confidence Intervals, Based Upon July 2000 AP-42 Data.



The adequacy of the fitted distribution can be evaluated, at least in part, by identifying what
proportion of the data are contained with the confidence intervals of the CDF.  On average, if the
fit is a good one, half of the data should be enclosed within the 50 percent confidence interval, 90
percent of the data should be enclosed within the 90 percent confidence interval, and 95 percent
of the data should be enclosed within the 95 percent confidence interval.  In Figure 1, three of the
five data points are contained within the 50 percent confidence interval, and all of the data are
enclosed by the 90 percent confidence interval.  This suggests, though cannot prove, that the
Weibull distribution is an acceptable fit to the data.

An example of intra-engine variability in emissions is shown in Figure 2, based upon 13
measurements on a Waukesha 3521 GL engine at 100 percent load.  A Weibull distribution was
chosen as the best fit to the data.  The mean estimate obtained from the fitted distribution is 0.21
lb/106 BTU, with a 95 percent confidence interval from 0.17 lb/106 BTU to 0.25 lb/106 BTU,
corresponding to a range of minus 21 percent to plus 19 percent.  In this case, the intra-engine
variation in emissions is much smaller than the inter-engine variability in emissions.

Probabilistic analysis results for the case of uncontrolled 2-SLB engine NOx data, based upon the
July 2000 AP-42 data, are given in Figure 3 and Figure 4 for the high load (90 to 105 percent)
and low (<90 percent) load ranges, respectively.  Figure 3 illustrates that the fitted Weibull
distribution agrees very well with the eleven data points; ten of eleven values are enclosed by the
50 percent confidence interval.  The data shown in Figure 4 appear to be in two groups:  one
group of data are less than 1.5 lb/106 BTU, and another group is greater than 3.5 lb/106 BTU.
Half of the data points are enclosed by the 50 percent confidence interval, and all of the ten data
points appear to be enclosed by the 90 percent confidence interval.  However, it is clear that the
fit is influenced by the grouping of the data.  While it may be the case that a mixture distribution
would be a better fit, it is difficult to fit mixture distributions to such a small data set.

Figure 3. Comparison of Empirical Cumulative Distribution of Average Uncontrolled
2-SLB Engine 90-105% load, NOx Emissions, fitted Weibull distribution, and

Bootstrap Simulation Confidence Intervals, Based Upon July 2000 AP-42 Data.
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4.2  Unequally-Weighted Data

In this section, an example case study is presented based upon emissions data that are not equally
weighted.  These data are from Table 1 for uncontrolled 2SLB engines, based upon the October
1996 version of AP-42.  The five emissions values are shown in Figure 5 as an empirical CDF,
along with three parametric distributions that have been fit to the data.

Because each of the five emissions values has a different market share-based weight, the method
for fitting distributions to the data had to be modified compared to when data have equal weight.
The approach taken here was to use 100 synthetic data points as a basis. The use of 100 basis
data points allows for emission values to occur repeatedly in proportion to their market share.
A portion of these 100 data points were assigned the emission factor associated with an engine,
in proportion to the market share of that engine.  For example, the Clark engines have 36 percent
of the market share; therefore, 36 of the 100 basis data points were assigned the Clark engine
emission value of 2.64 lb/106 BTU. Parametric distributions were fit to the 100 basis data points.

The comparison of the fitted distributions in Figure 6 suggests that the Weibull distribution may
provide the best fit to the data.  The Weibull distribution provides the best fit in the central
portion of the distribution, and appears not to have as "heavy" of a tail at the upper end of the
distribution.  For comparison purposes, both the Weibull and Lognormal distributions are
included in the bootstrap simulation analyses, the results of which are given in Figures 6 and 7.

In the bootstrap simulation, the number of bootstrap samples was 500, and the number of data
points per bootstrap sample was five. During bootstrap simulation, each simulated data point has
equal weight.  However, because the parametric distributions were fit to market share-weighted
data, the shape of the parametric distributions reflects the frequency with which data should be
sampled in different emission ranges.  For example, the steepness of the fitted CDF in the range
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Figure 4. Comparison of Empirical Cumulative Distribution of Average Uncontrolled
2-SLB Engine <90% load, NOx Emissions, fitted Weibull distribution, and Bootstrap

Simulation Confidence Intervals, Based Upon July 2000 AP-42 Data.



from approximately 2 lb/106 BTU to 3 lb/106 BTU means that there is a high probability that
random samples of emissions will occur in this range, corresponding to the three engines that
have the largest combined market share.  In contrast, there is comparatively little probability that
emissions values will be sampled for the two engines that, together, comprise only five percent
of the total market share.

The results of the bootstrap simulation with the Lognormal distribution are given in Figure 6.  It
appears that the 95 percent confidence interval encloses the empirical distribution of the data.
However, the confidence intervals are very wide, and there appear to be biases in the fit.  For
example, the central range of the empirical distribution coincides with the high side of the
confidence intervals, while the lower and upper tails of the empirical distribution coincide with
the low side of the confidence interval.  The apparent biases in the fit, and the wideness of the

Figure 6. Comparison of the Empirical Distribution Bootstrap Simulation Results Based
Upon a Lognormal Distribution for Market-Share Weighted NOx Emissions Rates for

Uncontrolled 2-Cycle Lean Burn Engines Based Upon October 1996 AP-42 Data

Figure 5:  Empirical Distribution and Fitted Parametric Distributions for
Market-Share Weighted NOx Emissions Rates for Uncontrolled 2-Cycle

Lean Burn Engines Based Upon October 1996 AP-42 Data
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intervals, suggest that the Lognormal is not a particularly good distribution to use in this case.

The results of the bootstrap simulation with the Weibull distribution are given in Figure 7.  These
results imply more consistency between the assumed parametric distribution and the empirical
distribution of the original data.  In particular, the empirical distribution appears to be reasonably
well enclosed by the 90 percent confidence interval, and the width of the confidence interval is
much narrower compared to the Lognormal case, without compromising the apparent goodness-
of-fit.  Therefore, the Weibull distribution is selected over the Lognormal distribution as a more
appropriate basis for estimating uncertainty in the mean.  The choice of parametric distribution
influences the estimated confidence interval for the mean.  The 95 percent confidence interval
for the mean is 2.14 to 3.38 lb/106 BTU based upon the Lognormal distribution, 2.25 to 3.26
lb/106 BTU based upon the Gamma distribution, and 2.39 to 2.99 lb/106 BTU based upon the
Weibull distribution.  Of these three, the Weibull distribution leads to the narrowest estimate of
the confidence interval.

5.0 Summary of Probabilistic Estimation Results for AP-42 October 1996
Version and July 2000 Version Emission Factors

A summary of probabilistic estimations of uncertainties in emission factors for uncontrolled
natural gas pipeline compressor engines are presented in Table 5, 6, 7 and 8.  For the October
1996 version, the analysis is based upon the complete dataset used by EPA to develop the AP-42
emission factors.  For the July 2000 version, the methods used by EPA were not fully
documented.  However, the relative range of uncertainty estimated for these emission factors
may still be useful in characterizing uncertainty.

Figure 7. Comparison of the Empirical Distribution Bootstrap Simulation Results
Based Upon a Weibull Distribution for Market-Share Weighted NOx Emissions Rates
for Uncontrolled 2-Cycle Lean Burn Engines Based Upon October 1996 AP-42 Data
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The summary tables indicate that the 95 percent range of uncertainty in the mean emission factor
ranges from as low as approximately plus or minus 10 percent to as high as minus 84 to plus 165
percent.  The range of uncertainty is influenced by a combination of the sample size and the
range of variability in the data.  Smaller sample sizes and/or larger inter-engine variability in the
data will tend to contribute to wider ranges of uncertainty in the estimated mean emission factor.

Table 5.  95 Percent Confidence Interval for Mean NOx Emissions for Natural Gas-Fueled
Internal Combustion Lean Burn Engines, Based on October 1996 AP-42 Data

Engine and
Emissions Control

Technology

No.
of

Data

Mean
of

Dataa

AP-42
Emission
Factora

Fitted
Distrib.

Mean of
Bootstrap

Sample Meansa
Relative 95% CI on

Meanb

2SLB, Uncontrolled 5 2.710 2.710 Weibull 2.714 -11.8% to +9.36%
2SLB, Clean Burn 11 0.834 0.834 Lognormal 0.835 -14.1% to +15.4%

2SLB, PCCc 20 0.850 0.850 Lognormal 0.840 -23.7% to +28.5%
4SLB, Uncontrolled 4 3.225 3.225 Weibull 3.170 -27.2% to +30.8%

aUnits are lb/106 BTU.  bCalculated based upon bootstrap simulation results. cPCC=Pre-Combustion Chamber

Table 6.  95 Percent Confidence Intervals for Mean TOC Emissions for Natural Gas-Fueled
Internal Combustion Lean Burn Engines, Based on October 1996 AP-42 Data

Engine and
Emissions Control

Technology

No.
of

Data

Mean
of

Dataa

AP-42
Emission
Factora

Fitted
Distrib.

Mean of
Bootstrap

Sample Meansa
Relative 95% CI on

Meanb

2SLB, Uncontrolled 5 1.539 1.539 Weibull 1.549 -36.0% to +42.7%
2SLB, Clean Burn 11 0.767 0.767 Weibull 0.770 -56.1% to +67.5%

2SLB, PCCc 20 1.756 1.756 Weibull 1.750 -17.1% to +18.3%
4SLB, Uncontrolled 4 1.261 1.261 Weibull 1.278 -47.6% to 55.7%

aUnits are lb/106 BTU.  bCalculated based upon bootstrap simulation results. cPCC=Pre-Combustion Chamber

Table 7.  95 Percent Confidence Intervals for Mean Uncontrolled NOx Emissions for Natural
Gas-Fueled Internal Combustion Lean Burn Engines, Based on July 2000 AP-42 Data

Engine and Load
Range

AP-42
Emission
Factora

No.
of

Data

No. of
Engines Fitted

Distrib.

Mean of
Bootstrap

Sample Meansa
Relative 95% CI on

Meanb

2SLB, 90% to 105% 3.17 34 11 Weibull 3.05 -24% to +24%
2SLB, < 90% 1.94 24 10 Weibull 2.41 -44% to +53%

4SLB, 90% to 105% 4.08 25 5 Weibull 3.17 -57% to +81%
4SLB, < 90% 0.847 13 4 Weibull 1.65 -84% to +165%

aUnits are lb/106 BTU.  bCalculated based upon bootstrap simulation results.

Table 8.  95 Percent Confidence Intervals for Mean TOC Emissions for Natural Gas-Fueled
Internal Combustion Lean Burn Engines, Based on July 2000 AP-42 Data

Engine and Load
Range

AP-42
Emission
Factora

No.
of

Data

No. of
Engines Fitted

Distrib.

Mean of
Bootstrap

Sample Meansa
Relative 95% CI on

Meanb

2SLB, Uncontrolled 1.64 57 14 Weibull 1.45 -16% to +18%
4SLB, Uncontrolled 1.47 37 4 Weibull 1.10 -51% to +50%

aUnits are lb/106 BTU.  bCalculated based upon bootstrap simulation results.



6.0 DISCUSSIONS AND CONCLUSIONS

This paper demonstrates the successful application of quantitative probabilistic analysis to
emission factor case studies, based upon the example of stationary natural gas-fueled internal
combustion engines.  The method employed is based upon characterization of uncertainty based
upon random sampling error.  The method includes:  (1) development of a database; (2)
visualization of the data using empirical CDFs; (3) evaluation of alternative parametric
probability distributions fitted to the data; (4) bootstrap simulation to characterize confidence
intervals in the fitted CDF; (5) selection of a judged best fit distribution based upon bootstrap
simulation results; and (6) quantification of uncertainty in the mean based upon the bootstrap
sampling distribution for the mean.

The probabilistic method was applied to several different types of analyses, including:  (1)
quantification of inter-engine variability in emissions and uncertainty in the mean for unequally
weighted data points; (2) quantification of inter-engine variability in emissions and uncertainty in
the mean for equally weighted data points; and (3) quantification of intra-engine variability in
emissions and uncertainty in individual engine emissions, based upon repeated measurements of
a single engine.  The range of inter-engine variability in emissions was typically as low as a
factor of five or as large as a factor of almost 30.  The range of intra-engine variability in
emissions was typically much smaller on an absolute basis than the range of inter-engine
variability.  The range of inter-engine variability in emissions suggests that the weights assigned
to each engine emission estimate can significantly affect the estimate of the mean emission rate.
Thus, the assumption of equal weighting of emissions data, as is often made, is likely to be a
strong assumption in many cases and, therefore, can be a significant factor biasing emission
factor estimates.

The estimates of uncertainty in the mean are often asymmetric, indicating that skewness
regarding observed variability in inter-engine emissions can lead to skewness in the estimate of
uncertainty in the mean.  Conventional analytical methods based upon normality assumptions
can lead to errors in the uncertainty estimate.  The mean values estimated from the probabilistic
analysis differ in some cases from the mean values estimated directly from the data because
parametric probability distributions allow for interpolation within the range of observed data and
for extrapolations beyond the range of observed data. For small data sets, it is unlikely that the
observed sample of data truly includes the minimum and maximum possible values.  On this
basis, extrapolation is warranted.

Although three parametric distributions were typically evaluated, most often the Weibull
distribution was found to provide a good fit to the data.  The Weibull may take on many shapes,
including negatively skewed, symmetric, or positively skewed.  Furthermore, the Weibull
distribution also tends to be less "tail-heavy" than the other two, and often provides a better
empirical fit to the data for these reasons.

The quantitative analysis demonstrated here focuses on one important source of uncertainty.  The
range of uncertainty associated with random sampling error was found to be as large as minus 84
percent to plus 165 percent, and in most examples was greater than plus or minus 20 percent.
Some other sources of uncertainty, such as potential lack of representativeness of the test cycles
used in the measurements, or potential lack of representativeness of the sample of engines, are



difficult to evaluate quantitatively.  Therefore, it is recommended that qualitative methods for
identifying sources of uncertainty also be used.  However, there is not a direct relationship
between the qualitative data rating and the range of uncertainty in the emission factor.
Therefore, we do not recommend that data quality ratings be used to make inferences regarding
quantitative ranges of uncertainty.

A significant difficulty encountered in this study was the lack of documentation of the
calculation methods for the July 2000 AP-42 emission factors. Complete documentation should
include enough information so that others can reproduce the calculations and results.  Therefore,
we recommend that EPA report the complete calculation method used for each emission factor.
With the growing recognition of the importance of quantitative uncertainty analysis, it will be
important for EPA and others to routinely report data regarding variability and uncertainty in
emission factors.
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