
Liu, Z., H.C. Frey, Y. Cao, and B. Deshpande, “Modeling of In-vehicle PM2.5 Exposure Using the Stochastic Human Exposure 
and Dose Simulation Model,” Paper 2009-A-238-AWMA, Proceedings, 102nd Annual Conference and Exhibition, Air & Waste 
Management Association, Detroit, Michigan, June 16-19, 2009. 

Modeling of In-vehicle PM2.5 Exposure Using the Stochastic 
Human Exposure and Dose Simulation Model 
 
Paper: 2009-A-238-AWMA 
 
Xiaozhen Liu, H. Christopher Frey, Ye Cao, Bela Deshpande 
Department of Civil, Construction, and Environmental Engineering, North Carolina State 
University, Campus Box 7908, Raleigh, NC 27695-7908. 
 
ABSTRACT  
  
Factors that influence in-vehicle PM2.5 exposure are indentified and assessed. The methodology 
used in the current version of Stochastic Exposure and Dose Simulation model for Particulate 
Matter (SHEDS-PM) for in-vehicle PM2.5 concentration is reviewed, and alternative modeling 
approaches are identified and evaluated. SHEDS-PM uses a linear regression model to estimate 
in-vehicle PM2.5 concentration based on ambient PM2.5 concentration, such as from a fixed site 
monitor (FSM) or a grid cell average concentration estimate from an air quality model. The ratio 
of in-vehicle to FSM concentration varies substantially with respect to location, vehicle type and 
other factors. SHEDS-PM was used to estimate PM2.5 exposure for 1% of people living in Wake 
County, NC in order to assess the importance of in-vehicle exposures. In-vehicle PM2.5 exposure 
can be as much as half of the total exposure for some individuals, depending on employment 
status and the time spent in-vehicle during commuting. An alternative modeling approach is 
explored based on the use of a dispersion model to estimate near-road PM2.5 concentration based 
on FSM data and a mass balance model for estimating in-vehicle concentration. 
Recommendations for updating the input data to the existing model, and implementation of the 
alternative modeling approach are made. 
 
INTRODUCTION 
 
Fine particulate matter (PM2.5) includes particles that are 2.5 micrometers (microns) or less in 
aerodynamic diameter. Many epidemiology studies indicate that ambient PM exposure is 
associated with short-term and chronic respiratory effects. Such effects include exacerbation of 
asthma and increased susceptibility to infection.1  Exposure to PM2.5 also decreases lung 
function and can cause lung injuries.1  Therefore, there is a need to investigate PM2.5 human 
exposure in order to support assessment of the association between exposure and adverse health 
effects. 
 
In 2007, 90% of US commuters drove to work, with a total number of 120 million vehicles.2 
Thus, the in-vehicle microenvironment is a potential significant contributor to human exposure 
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to pollutants, especially for commuters. A microenvironment is a location within which air 
pollutant concentrations are relatively uniform or can be well-characterized.  In-vehicle PM2.5 
concentration is high compared to those of other microenvironments, such as houses.3  
 
Scenario-based human exposure models simulate the movement of individuals through 
microenvironments and their contact with pollutants. Here the focus is on inhalation exposure to 
airborne PM2.5. The Stochastic Human Exposure and Dose Simulation for PM2.5 (SHEDS-PM) 
was developed by the US Environmental Protection Agency (USEPA) to simulate individual and 
population exposure to PM2.5.

4  
 
Eight microenvironments are accounted for in SHEDS-PM, including outdoors, residence, office, 
school, store, restaurant, bar, and in-vehicle. For each individual, a time-weighted PM2.5 
concentration is estimated based on the amount of time spent in each microenvironment and the 
microenvironmental concentrations. For the in-vehicle microenvironment, SHEDS can simulate 
cars, trucks, buses, trains and “all other” in-vehicle microenvironments.  
 
This paper reviews the in-vehicle exposure methodology, inputs, and the key factors that 
influence in-vehicle PM2.5 exposure. The objectives of this paper are to: (a) evaluate the 
algorithm and inputs for estimating the in-vehicle PM2.5 concentration; (b) assess the importance 
of in-vehicle PM2.5 exposure; (c) identify and evaluate an alternative modeling approach for 
estimating in-vehicle PM2.5 concentration, and (d) demonstrate the improved in-vehicle exposure 
modeling approach for implementation in SHEDS-PM. 
 
OVERVIEW OF THE STOCHASTIC EXPOSURE AND DOSE 
SIMULATION MODEL FOR PARTICULATE MATTER 
 
The key inputs and outputs in SHEDS-PM are reviewed. Furthermore, the algorithms and inputs 
for the in-vehicle microenvironment are reviewed.  
 
 
Key Inputs and Outputs 
 
The key input data for SHEDS-PM include: (a) ambient PM2.5 concentration; (b) human activity 
data; (c) demographic data; (d) parameters for microenvironment-specific equations. 
The ambient PM2.5 concentration data for the population of interest is input data that must be 
supplied by the user. The data can be obtained from fixed monitoring sites (FMSs), gridded air 
quality models, or a combination of both. The ambient concentration data must be converted by 
the user to a census tract basis for input to SHEDS-PM.  
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Human activity data used in SHEDS-PM are from the Consolidated Human Activity Database 
(CHAD).4 CHAD contains data obtained from multiple human activity studies that were 
collected at city, state, and national levels5. These data include diaries that describe the sequence 
and duration of time spent in each microenvironment.  
 
Demographic data from the US Census are used to generate the population for the simulation on 
a census tract basis6. SHEDS-PM randomly selects an individual from the census database, and 
uses demographic characteristics such as age, gender and employment status of every individual 
to match with diary data from CHAD in order to quantify activity6. 
 
The PM2.5 concentration in an indoor microenvironment can be estimated in one of three ways: 
(1) scaling, (2) linear regression, and (3) mass balance. Each microenvironment requires that 
parameters be specified according to the estimate method. These parameters have default values 
that can be overridden by the user. 
 
The default outputs of SHEDS are daily average exposure for every individual. Inter-individual 
variability in exposure for all the microenvironments is also reported. The user can choose to 
view a time series of events, which characterize the concentration, time length and exposure for 
every activity in every microenvironment for any individuals during the simulated period. 
 
Algorithms and Inputs for In-vehicle PM2.5 Exposure 
 
The calculation scheme used in SHEDS-PM for in-vehicle exposure is shown in Figure 1. To run 
SHEDS-PM, a user must specify the simulated geographic area in terms of census tracts, the 
number of individuals to be simulated, specific age and gender cohorts to be simulated, whether 
commuting is to be simulated, and a time frame for the simulation (number of days).  
Commuters are simulated only for employed individuals.  
 
The in-vehicle PM2.5 concentration is estimated as a linear function of ambient PM2.5 
concentration:  

 vtvtambvtvtiv, ε++= bCkC                                    (Eq. 1) 

Where, 
 bvt   = in-vehicle non-ambient PM2.5 concentration for vehicle type vt (µg/m3) 

Civ, vt = in-vehicle PM2.5 concentration for vehicle type vt (µg/m3) 
 Camb = ambient PM2.5 concentration (µg/m3) 
 kvt   = in-vehicle/ambient ratio PM2.5 concentration for vehicle type vt, constant 
 vt   = vehicle types: car, bus, truck, train, and other vehicles 

ε  = error term for residual variability in in-vehicle PM2.5 concentration, where  
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     ε ~ N (0, σε) and σε is the standard deviation (µg/m3) 
 
The ratio of in-vehicle to ambient PM2.5 concentrations, kvt, for vehicle type vt is determined by 
comparing in-vehicle measurement data with ambient data. The parameter bvt is non-zero only 
when there are in-vehicle sources of PM2.5, such as smoking.6  
 
Figure 1.  Conceptual Diagram of Current In-vehicle Exposure Calculation Scheme in the 

Stochastic Human Exposure and Dose Simulation Model 

 
 
METHODOLOGY 
 
The methodology includes:  (1) identification, review, and assessment of the algorithm and 
inputs currently used in SHEDS-PM to estimate in-vehicle PM2.5 concentration, based on 
literature review and assessment of variability in input data; (2) sensitivity analysis of 
SHEDS-PM to assess the contribution of in-vehicle exposure to total exposure and the 
uncertainty in such estimates attributable to unexplained variability in input data; (3) 
identification of key factors that influence or govern in-vehicle PM2.5 concentration based on 
literature review; (4) identification and characterization of an alternative approach to estimating 
in-vehicle PM2.5 based on integrating models for ambient and vehicle interior air quality; and (5) 
development and demonstration of a process for implementing the alternative modeling approach 
in SHEDS-PM. 
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As detailed in the results section, the literature review provides support for the hypothesis that 
in-vehicle PM2.5 concentration can be estimated more accurately based on ambient concentration 
immediately outside the vehicle rather than by reference to ambient concentration:  (a) 
measured at a receptor a significant distance away from the roadway, such as a fixed monitoring 
site; or (b) estimated by a gridded air quality model.  
 
In order to develop the alternative modeling approach, a near roadway air quality model, 
CAlifornia LINE Source Dispersion Model, version 4 (CALINE4), was identified and selected as 
the basis for estimating the incremental component of ambient concentration in the vicinity of a 
roadway that is attributable to local emissions from vehicles operating on the roadway. This 
incremental concentration is superimposed with an area-wide concentration from a FMS or a 
gridded air quality model to estimate the total concentration surrounding the vehicles that operate 
on the roadway. 
 
There is not an existing modeling tool that can accurately predict PM2.5 concentration on a 
roadway in the flow path of vehicles. A challenge in making such estimates is to account for the 
effects of turbulence induced by the movement of vehicles. The methodology can be updated at a 
later time with a different air quality model if one becomes available. 
 
For air quality inside the vehicle, a mass balance approach was adopted based on data and 
equations reported by Ott et al.7, and Abadie et al. 8 Parameters for the mass balance model were 
estimated based on data from the literature. 
 
The coupled use of the near-road and in-vehicle air quality models is demonstrated via example 
case studies that take into account variations in ambient conditions, traffic emissions, vehicle 
characteristics, and vehicle operation.  The results obtained from the alternative modeling 
approach are compared to those obtained from the existing approach used in SHEDS-PM. The 
significance of differences in results is assessed. 
 
RESULTS 
 
The key results include the findings from review of the current in-vehicle exposure-related inputs 
and parameters of SHEDS-PM, identification of key factors that influence in-vehicle exposure; 
sensitivity analysis of SHEDS-PM to assess how in-vehicle exposure varies with respect to 
selected model inputs; identification and evaluation of an alternative approach for estimating 
in-vehicle exposure; design of a strategy for implementing the alternative approach using the 
current version of SHEDS-PM, and demonstration of the alternative approach for an illustrative 
case study.   
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Review of In-vehicle Inputs in SHEDS-PM 
The key input to Equation (1) is the ratio of in-vehicle PM2.5 concentration to ambient PM2.5 
concentration kvt. 
 
Studies such as Adams et al.,3 Riediker et al.,9 Gee et al.,10 and Lai et al.11 imply that the 
in-vehicle to FMS ambient ratio has a wide range of variability, depending on factors such as 
traffic counts. Furthermore, several investigators conclude that there is not a strong correlation 
between ambient PM2.5 concentration and in-vehicle concentration.12-14 

 
Key Factors that Influence In-vehicle PM2.5 Concentration 
Key factors influencing in-vehicle PM2.5 exposure include traffic conditions, wind speed, wind 
direction, air exchange, vehicle types, and time spent in-vehicles.   
 
Kaur et al.14 identified traffic counts to be a significant determinant (p<0.05) of ultrafine particle 
count. In a toll gate worker exposure study, 8-hr averaged PM2.5 concentrations measured during 
a 10-day period were highly related to vehicle counts.11  
 
Adams et al.12 measured in-vehicle PM2.5 concentration for vehicles traveling on three connected 
routes in Central London, UK and found that wind speed measured at a wind center station, 
which was within one mile of the nearest route, was weakly correlated to in-vehicle PM2.5 
concentration, especially for private cars during the winter (r2=-0.40). Several other studies 
suggest that wind speed and direction both have considerable impacts on the PM concentrations 
on or near the roadway;15-17 however, the impact of wind direction on in-vehicle PM2.5 exposure 
has not been addressed. 
 
In-vehicle PM2.5 concentrations are typically measured for different window openings (closed, 
fully open or partially open) and the status of operation of ventilation or air conditioners (A/C). 
Chan et al.18 found significant differences in the in-vehicle PM10 concentration in taxis, when 
comparing air conditioned and non-air-conditioned vehicles. Rodes et al. 19 observed higher 
PM2.5 levels in vehicles with windows open than vehicles with windows closed.  
 
The in-vehicle PM2.5 concentrations measured for different vehicle types, including cars, buses, 
and subways, vary substantially with vehicle types. For example, Tang et al. 20 measured 
in-vehicle PM2.5 concentrations for passenger cars, taxis, buses and trucks in Macao, China to be 
116, 192, 209, and 192 µg/m3, respectively. 
 
Sensitivity Analysis of SHEDS Based on a Case Study 
Sensitivity analyses were conducted to assess the response of SHEDS-PM to variations in 
selected inputs. The sensitivity analysis is based on a case study for Wake County, NC. Wake 
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County contains 105 census tracts and had a 2000 population of 630,000 people. A random 
sample of one percent of these individuals was simulated. People of all ages and genders were 
included and commuting was considered. PM2.5 concentration data for the case study are based 
on hourly data from July 1, 2002 to July 30, 2002 from the output of the Community Multiscale 
Air Quality (CMAQ) modeling system. CMAQ is an air quality modeling system which can 
simulate multiple air pollutants in various spacial scales21. The CMAQ air quality data used here 
was provided by the U.S. Environmental Protection Agency.  The average PM2.5 concentration 
during this time period is 12.7 µg/m3. All the key input assumptions for each microenvironment 
are listed in Table 1 except for the in-vehicle microenvironment. 
 
Three in-vehicle to ambient ratios of 0.71, 2.5, and 14.3 were used for sensitivity analysis. They 
were calculated from the studies of Riediker et al.,9 Gee et al.,10 and Lai et al.,11 and represent 
low, medium, and high ratios, respectively. The SHEDS-PM model was run for the case study 
once for each ratio. Each model run was conducted on a Windows XP quad-processor computer 
and had an approximate runtime of 100 minutes. The sensitivity analysis results are given in 
Table 2. When the ratio is low (0.71), the portion of in-vehicle exposure relative to the total 
exposure was only 6% in average for all the simulated people. However, when the ratio is very 
high (14.3), the portion increases to 57%. Hence, the contribution of the in-vehicle 
microenvironment to total exposure is highly variable and can be significant.  
 
Table 2.  Sensitivity Analysis of Total and In-vehicle Exposure to PM2.5 Based on Variation 
of the In-vehicle/ambient PM2.5 Concentration Ratio kvt 
In-vehicle/ambient PM2.5 
Concentration Ratio kvt  

(for all vehicles) 
Total PM2.5 
Exposure (µg/m3) 

In-vehicle PM2.5 
Exposure (µg/m3) 

Percentage of Total 
Exposure that Occurs 
In-vehicle (%) 

0.71 12.0 0.7 6.0 
2.5 13.9 2.6 18.4 
14.3 26.2 14.9 57.0 

 
The results from SHEDS-PM are sensitive to the in-vehicle to ambient ratio. However, as 
discussed in the review of in-vehicle inputs in SHEDS-PM, the ambient concentration and 
in-vehicle concentration are not well-correlated. Ambient concentrations estimated using gridded 
air quality models such as CMAQ do not take into account local spatial variations in 
concentration on or near a roadway. The use of a ratio of in-vehicle to area-wide ambient 
concentration, such as kvt, does not account for the influential local emission on the roadway, 
with respect to PM2.5 concentrations surrounding the vehicle, nor factors that affect penetration 
of PM2.5 from the surroundings of the vehicle into the vehicle interior.  
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Identification and Evaluation of an Alternative Approach 
Three Gaussian models, CALINE4, CALINE3 with queuing and hot spot calculations 
(CAL3QHC) and the atmospheric dispersion modeling system (AERMOD), are recommended 
by US EPA to predict near-road PM2.5 concentrations. Chen et al.22 compared the estimates of the 
three models with near-road PM2.5 concentration measurements and found that CALINE 4 
performs best when accounting for background PM2.5 concentration. Therefore, CALINE4 was 
selected as the dispersion model for the alternative approach.  
 
Ott et al.7 derived a mass balance model using air exchange rate for estimating in-vehicle PM2.5 
concentration, but simplified it by only accounting for interior PM sources such as smoking 
while assuming that the ambient PM2.5 concentration was negligible. Abadie et al.8 derived a 
more detailed mass balance model to estimate in-vehicle PM concentration due to smoking in 
French high-speed train (TGV) smoker cars. It accounted the effects of filtration, deposition and 
air exchange. A mass balance model is used here that takes into account penetration of ambient 
PM2.5.  The removal of PM2.5 by both filtering and deposition is quantified by a constant 
efficiency coefficient rate η.  Thus, the mass balance for in-vehicle air quality is: 
 

sv
i CVtVC

dt
tVdC )1(ACH)()(

iv
v η−××+=                       (Eq. 2) 

Where,  
 V  = interior volume of the vehicle, m3 
 t  = time, hr 
 ACH = air exchange rate, hr-1 
 Civ (t) = in-vehicle PM2.5 concentration, µg/m3 
 Csv  = ambient PM2.5 concentration surrounding the vehicle, µg/m3 

η   = filtration and deposition removal efficiency of PM2.5, constant 
  
The solution to the first order differential equation is:  

)-(1)( ηrCtC sviv =                               (Eq. 3) 

Where, 

ter   ACH1 ×−−=                 (Eq. 4) 

The quantity r is the efficiency of air exchange between ambient air surrounding the vehicle and 
the interior air of the vehicle. 
 
CALINE4 is able to model straight roads, curved roads, intersections, parking lots and other 
types of roadway geometry.23 However, the CHAD diary data do not contain information 
regarding the time people spend on roadways of different geometries. Thus for simplicity, only 
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straight roads are modeled here. There are 3 types of roadways identified and modeled. The types 
are local, arterial and highway. The major difference among the categories is the lane width and 
the number of lanes. 
 
A receptor location should be as close to road as possible in order to be a surrogate for on-road 
concentration. Validation studies of CALINE4 indicated that a distance of about 3.4 meters away 
from the emission source is appropriate.18 
 
The near-road incremental PM2.5 predicted by CALINE4 is linearly proportional to the vehicle 
average emission factor and traffic volume.23 Therefore, only one set of emission factor and 
traffic volume estimates were used. If there is a need to estimate the near-road PM2.5 increment 
for other sets of emission factors and traffic volumes, a linear proportion relative to the original 
increment is sufficient. 
 
In CALINE4, the effect of wind direction is related to the road geometry. Since the road types 
used in this study are based on assumptions instead of real road geometry, it is not useful to 
specify an accurate wind direction. Therefore, the “worst case” scenario in CALINE4 which 
selects the wind angle that produce the highest concentrations at the receptor is chosen. 
Examples of near-road PM2.5 increments predicted by CALINE4 are summarized in Table 3. The 
highest increment occurs for Local roadway and a wind speed of 1.0 m/s. 
 
Table 3.  Near-road PM2.5 Increment (µg/m3) for Road Type and Wind Speed Scenariosa 
 
Wind Speed (m/s) 1.0 3.3 5.3 
Stability Class G G B 

Road Type 
Local 9.0 3.5 2.0 
Arterial 8.4 3.5 2.0 
Highway 6.8 3.2 1.9 

 
aAll examples are based on an emission rate of 0.692 g/vehicle km traveled,18 assuming the same 
traffic flow. 
 
Ott et al.24 measured the air exchange rate of various scenarios for four vehicles with varying the 
vehicle speed, window opening and ventilation. The lowest mean ACH was 0.92 hr-1, which was 
observed for a 2005 Toyota Corolla when the vehicle was stopped with the window closed and 
the fan off. The highest mean ACH of 78.6 hr-1 was observed for a 2005 Ford Taurus sedan at the 
speed of 20 mph with one window fully open, recirculation turned on and the ventilation fan 
turned off. 
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Based on calculations using Eq. 4, at a high ACH such as 71 h-1, the air exchange efficiency r 
increases to approximately 100% in less than 10 min. At a low ACH, r increases slowly with 
time. In a typical commuting event which lasts about 40 min, r always increases to more than 
50%. The average r ranges from 0.75 to 0.99 for the selected ACH. 
 
Implementation of the Alternative Approach in SHEDS-PM 
The alternative modeling approach using CALINE4 and a separate in-vehicle air quality model is 
too computationally intensive to implement directly in SHEDS-PM. However, the results of the 
alternative model can be used to develop values for the slope and intercept of Equation (1) as 
follows: 

εηη +−+−= icrambiv CrCrC )1()1(            (Eq. 5) 

 
Where,  
 Cicr  = the local incremental PM2.5 contribution to the near-road PM2.5 concentration 
Thus, the alternative approach can be implemented in SHEDS-PM by replacing kvt by r (1-η) and 
replacing bvt by r (1-η)Cicr.  
 
Table 4.  Inputs and Outputs of Alternative Approach Demonstration Scenarios 
 
  Scenario A Scenario B Current 

SHEDS-PM 
CALINE4 Inputs Wind Speed (m) 2.2 11.8  

Road Type Local Highway  
Road Width (m) 12.3 34.8  

CALINE4 Outputs Cicr (µg/m3) 9.0 1.9  
SHEDS-PM Inputs 
For In-vehicle 
Microenvironment 

Slope 1.0 0.58 0.71 
Intercept (µg/m3) 9.0 1.1 0.0 

SHEDS-PM 
Outputs 

PM2.5 Exposure (µg/m3) 12.9 12.0 12.0 
In-vehicle PM2.5 
Exposure(µg/m3) 

1.6 0.7 0.7 

Percentage of Total 
Exposure that Occurs 
In-vehicle (%) 

12.2 5.7 6.0 
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Demonstration of the Alternative Approach 
Two scenarios are chosen to demonstrate the alternative approach and are simulated in 
SHEDS-PM for Wake County, NC. Scenario A represents the in-vehicle PM2.5 exposure when 
the vehicles travel on local roads with open windows and negligible removal efficiency η. 
Scenario B represents the in-vehicle PM2.5 exposure when the vehicles travel on highways with 
closed windows and moderate removal efficiency η. The key inputs and selected outputs for each 
scenario are shown in Table 4. The outputs are compared with the case using the current 
SHEDS-PM typical settings kvt=0.71 and bvt=0. Scenario A uses a high value of Cicr and the 
upper limits of r and (1- η). Scenario B uses a low Cicr and a relatively low r(1- η), 58%, as 
measured by Rodes et al..16 Scenario A has a significant larger in-vehicle PM2.5 exposure than the 
base case. However, Scenario B has a simulated in-vehicle exposure level approximately the 
same as that based on current SHEDS-PM approach. 
 
CONCLUSIONS 
 
The review of algorithms and inputs for SHEDS-PM indicate that the ratio of in-vehicle to 
ambient concentration is subject to substantial variability. A sensitivity analysis implies that 
in-vehicle exposure could make up more than half of an individual’s exposure. Therefore, 
updates to in-vehicle microenvironmental inputs for SHEDS-PM are necessary.  
 
An alternative approach which integrates a dispersion model for estimating near-roadway air 
quality and a mass balance approach for in-vehicle air quality can be used to develop improved 
inputs for SHEDS-PM.  
 
There are not adequate data regarding ambient PM2.5 concentration surrounding vehicles; 
therefore, the mass loss of ambient PM2.5 when penetrating into the vehicle is difficult to quantify.  
This is a parameter for which additional data would be useful. 
 
The alternative approach should be applied, for reasonable scenarios, to parameters of the linear 
equation used in SHEDS-PM for estimating in-vehicle PM2.5 concentration.  
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