$Q_c^3(x)$ Bifurcations

Let $Q_c(x) = x^3 + c$. Use phaser to answer these questions. Turn in at least one graph for each problem and find the c’s to 4 significant figures. All the c values should be between -1.7 and -1.9.

1. Find the c where a 3-cycle for $Q_c(x)$ begins. Look at $Q_c^3(x)$ on phaser. -1.75
2. Find the c where $Q_c^3(x)$ has a critical point that is fixed. -1.75468
3. Find the c where $Q_c^3(x)$ has a period doubling bifurcation. -1.76653
4. Find the c where $Q_c^3(x)$ has a critical point which is eventually fixed. -1.7903275

Tangent bifurcation for Q_c^3 at $c = -1.75$
The origin is a critical point and is fixed when \(c = -1.75489 \).

\[c = -1.76853 \] a point of period 2 has been produced.
$c = -1.76852$ the fixed point is still attracting.
\[c = -1.7903275 \]

The critical point is eventually fixed.