1. \(y_8 = 3, 2^4 \)
\(56 = 7, 2^3 \)

56 is to the left of 48 in the Sarkovskii ordering, so there is a continuous map of period 48 which is not of prime period 56.

2. \(176 = 11, 2^4 \)
\(96 = 3, 2^5 \)

176 is to the left of 96 in the Sarkovskii ordering, so if a continuous map of 176 has a point of prime period 176 it must also have one of period 96.

3. It cannot happen if \(F \) is continuous. But an example where \(F \) is not continuous is

\[
F(x) = \begin{cases}
\frac{1}{2} & \text{if } x \in \left[0, \frac{1}{2}\right) \\
1 & \text{if } x \in \left[\frac{1}{2}, \frac{3}{2}\right) \\
0 & \text{if } x \in \left(\frac{3}{2}, 1\right]
\end{cases}
\]

\(F(0) = \frac{1}{2}, \quad F(1) = 1, \quad F(1) = 0 \)
4. in the fract graph, \(F([0,2]) = [1,3] \supset [0,2] \)
and \(F([1,3]) = [0,3] \) the entire interval.
This is very much like the conditions in point 3
implies closure.

Let \(A_1 \) be a closed interval in \([1,3]\) with
\(F(A_1) = [0,3] \). Let \(A_2 \subset [0,2] \) be a closed interval
with \(F(A_2) = A_1 \), there is such an interval \(F([0,2]) = A_1 \).

Since \(F([1,3]) = A_2 \) \(\cap A_3 \) are closed intervals in \([3,5]\)
with \(F(A_3) = A_2 \).

Now \(F(A_3) = F^2(A_2) = F(A_1) = [0,3] \supset A_2 \).

Thus there is a fixed point \(x^* \) for \(F^3 \) on \(A_2 \). Now
\(F(x^*) \in A_2 \subset [0,2] \). \(x^* + 2 \) since \(2 \) has period 4. Thus \(x^* \) is not fixed. Its orbit is in
\([1,3]\) for two iterations and then in \([0,2] \). Thus
\(x^* \) has period 3.

By Sarkovski's ordering it has points of every
prime period.
\[f([1, 5]) = [1, 6], \quad f([4, 5]) = [1, 5], \quad f([5, 7]) = [2, 7] \]
\[f([2, 5]) = [1, 6], \quad f([4, 6]) = [3, 7]. \]

\[f^5([1, 6]) = 2 \quad \text{a point of period 7 out 5.} \]

Similarly,
\[f^5([2, 3]) = [2, 3] \cap [2, 7] = 3 \]
\[f^5([3, 4]) = [3, 4] \cap [2, 7] = 4 \]
\[f^5([4, 5]) = [4, 5] \cap [2, 7] = 5 \]
\[f^5([5, 6]) = [5, 6] \cap [2, 7] = 6. \]

These intersections are all period 7 out period 5.

So the only internal left is \([1, 6]\).

\[f([1, 6]) = [1, 6] \quad \text{decreasing} \]
\[f([2, 5]) = [2, 6] \quad \text{decreasing} \]
\[f([3, 4]) = [3, 5] \quad \text{decreasing} \]
\[f([4, 5]) = [4, 6] \quad \text{decreasing} \]
\[f([5, 6]) = [5, 7] \quad \text{decreasing} \]
\[f^5([1, 6]) = [2, 7] \quad \text{decreasing} \]

\[f^5 \] is decreasing on \([1, 6]\) as it has only one fixed point which is the original fixed point, so period 5.
7. The integer values give a point of period 6.

\[F(\frac{4}{3}) = \frac{4}{3} \]
\[F(\frac{2}{3}) = \frac{2}{3} \]
Points in these two intervals go back and forth, so points in them cannot have odd periods.

\[F(\frac{3}{4}) = \frac{3}{4} \] and it is decreasing. The points that get cut must stay out, see the first argument.

For odd iterations of \(\frac{3}{4} \), the map is decreasing on what remains in \(\frac{3}{4} \), so it leaves only one fixed point. But this is the original fixed point of period 1. Therefore no point has prime period an odd number larger than 1.