6.2

5. Show that \(f'(x) < 0 \) for \(x > 1 \). Then \(f \) is strictly decreasing on \([1, \infty)\) so that \(f(a/b) < f(1) \) for \(a > b > 0 \).

8. If \(\delta > 0 \) and \(a+h < b \), there exists \(c \in (a, a+h) \) such that \(f(a+h) - f(a) = h f'(c) \). Since \(c \to a \) as \(h \to 0^+ \), it follows that \(f'(a) = \lim_{h \to 0^+} \frac{f(a+h) - f(a)}{h} \) and \(f'(c_h) = a \). Now consider \(h < 0 \).

Page 201

7.1

4. (b) If \(u \in U_2 \), then \(u \in [x_{i-1}, x_i] \) with tag \(t_i \in [1, 2] \), so that (i) \(x_{i-1} \leq t_i \leq 2 \) which implies that \(u \leq x_i \leq x_{i-1} + ||P|| \leq 2 + ||P|| \) and (ii) \(1 \leq t_i \leq x_i \) which implies that \(1 - ||P|| \leq x_i - ||P|| \leq x_{i-1} \leq u \). Therefore \(u \) belongs to \([1 - ||P||, 2 + ||P||]\).

On the other hand, if \(1 + ||P|| \leq v \leq 2 - ||P|| \) and \(v \in [x_{i-1}, x_i] \), then (i) \(1 + ||P|| \leq x_i \) which implies that \(1 \leq x_i - ||P|| \leq x_{i-1} \leq t_i \) and (ii) \(x_{i-1} \leq 2 - ||P|| \) which implies that \(t_i \leq x_i \leq x_{i-1} + ||P|| \leq 2 \). Therefore we get \(t_i \in [1, 2] \).

6. (a) If \(P \) is a tagged partition of \([0, 2]\), let \(\hat{P}_1 \) be the subset of \(\hat{P} \) having tags in \([0, 1]\), and let \(\hat{P}_2 \) be the subset of \(\hat{P} \) having tags in \([1, 2]\). The union of the subintervals in \(\hat{P}_1 \) contains the interval \([0, 1 - ||\hat{P}||]\) and is contained in \([0, 1 + ||\hat{P}||]\), so that \(2(1 - ||\hat{P}||) \leq S(f; \hat{P}_1) \leq 2(1 + ||\hat{P}||) \). Similarly, the union of the subintervals in \(\hat{P}_2 \) contains \([1 + ||\hat{P}||, 2]\) and is contained in \([1 - ||\hat{P}||, 2]\), so that \(1 - ||\hat{P}|| \leq S(f; \hat{P}_2) \leq 1 + ||\hat{P}|| \). Therefore \(3 - 3||\hat{P}|| \leq S(f; \hat{P}) = S(f; \hat{P}_1) + S(f; \hat{P}_2) \leq 3 + 3||\hat{P}|| \), whence \(S(f; \hat{P}) - 3 \leq 3||\hat{P}|| \), and we should take \(||\hat{P}|| < \varepsilon/3 \).

8. Since \(-M \leq f(x) \leq M \) for \(x \in [a, b] \), Theorem 7.1.4(c) implies that we have \(-M(b - a) \leq \int_a^b f \leq M(b - a) \) whence the inequality follows.

9. Given \(\varepsilon > 0 \) there exists \(\delta_\varepsilon > 0 \) such that if \(||\hat{P}|| < \delta_\varepsilon \) then \(|S(f; \hat{P}) - \int_a^b f| < \varepsilon \). Since \(||\hat{P}_n|| \to 0 \), there exists \(K_\varepsilon \) such that if \(n > K_\varepsilon \) then \(||\hat{P}_n|| < \delta_\varepsilon \), whence \(|S(f; \hat{P}_n) - \int_a^b f| < \varepsilon \). Therefore, \(\int_a^b f = \lim_n S(f; \hat{P}_n) \).

11. If \(f \in \mathcal{R}[a, b] \), then Exercise 9 implies that both sequences of Riemann sums converge to \(\int_a^b f \).

12. Let \(P_n \) be the partition of \([0, 1]\) into \(n \) equal parts. If \(\hat{P}_n \) is this partition with rational tags, then \(S(f; \hat{P}_n) = 1 \), while if \(Q_n \) is this partition with irrational tags, then \(S(f; Q_n) = 0. \)