5.6

6. If \(f \) is continuous at \(c \), then \(\lim (f(x_n)) = f(c) \), since \(c = \lim (x_n) \). Conversely, since \(0 \leq j_f(c) \leq f(x_{2n}) - f(x_{2n+1}) \), it follows that \(j_f(c) = 0 \), so \(f \) is continuous at \(c \).

10. If \(f \) has an absolute maximum at \(c \in (a, b) \), and if \(f \) is injective, we have \(f(a) < f(c) \) and \(f(b) < f(c) \). Either \(f(a) \leq f(b) \) or \(f(b) < f(a) \). In the first case, either \(f(a) = f(b) \) or \(f(a) < f(b) < f(c) \), whence there exists \(b' \in (a, c) \) such that \(f(b') = f(b) \). Either possibility contradicts the assumption that \(f \) is injective. The case \(f(b) < f(a) \) is similar.

Page 167

6.1

4. Note that \(\left| f(x)/x \right| \leq |x| \) for \(x \in \mathbb{R} \).

9. If \(f \) is an even function, then \(f'(-x) = \lim_{h \to 0} [f(-x + h) - f(-x)]/h = -\lim_{h \to 0} [f(x - h) - f(x)]/(-h) = -f'(x) \).