1. Let \(x_{2n-1} := 2n - 1, x_{2n} := 1/2n; \) that is \((x_n) = (1, 1/2, 3, 1/4, 5, 1/6, \ldots). \)

6. (a) \(x_{n+1} < x_n \iff (n + 1)^{1/(n+1)} < n^{1/n} \iff (n + 1)^n < n^{n+1} = n^n \cdot n \iff (1 + 1/n)^n < n. \)

 (b) If \(x := \lim(x_n), \) then

 \[
 x = \lim(x_{2n}) = \lim((2n)^{1/2n}) = \lim((2^{1/n}n^{1/n})^{1/2}) = x^{1/2},
 \]

 so that \(x = 0 \) or \(x = 1. \) Since \(x_n \geq 1 \) for all \(n, \) we have \(x = 1. \)

7. (a) \((1 + 1/n^2)^{n^2} \rightarrow e, \)

 (b) \((1 + 1/2n)^n = ((1 + 1/2n)^{2n})^{1/2} \rightarrow e^{1/2}, \)

 (c) \((1 + 1/n^2)^{2n^2} \rightarrow e^2. \)

 (d) \((1 + 2/n)^n = (1 + 1/(n+1))^n \cdot (1 + 1/n)^n \rightarrow e \cdot e = e^2. \)

10. Choose \(m_1 \) such that \(S \leq s_{m_1} < S + 1. \) Now choose \(k_1 \) such that \(k_1 \geq m_1 \) and \(s_{m_1} - 1 < x_{k_1} \leq s_{m_1}. \) If \(m_1 < m_2 < \ldots < m_{n-1} \) and \(k_1 < k_2 < \ldots < k_{n-1} \) have been selected, choose \(m_n > m_{n-1} \) such that \(S \leq s_{m_n} < S + 1/n. \) Now choose \(k_n \geq m_n \) and \(k_n > k_{n-1} \) such that \(s_{m_n} - 1/n < x_{k_n} \leq s_{m_n}. \) Then \((x_{k_n}) \) is a subsequence of \((x_n) \) and \(|x_{k_n} - S| \leq 1/n. \)

12. Choose \(n_1 \geq 1 \) so that \(|x_{n_1}| > 1, \) then choose \(n_2 > n_1 \) so that \(|x_{n_2}| > 2, \) and, in general, choose \(n_k > n_{k-1} \) so that \(|x_{n_k}| > k. \)

16. For example, \(X = (1, 1/2, 3, 1/4, 5, 1/6, \ldots). \)