1. Any negative number or 0 is a lower bound. For any \(x \geq 0 \), the larger number \(x + 1 \) is in \(S_1 \), so that \(x \) is not an upper bound of \(S_1 \). Since \(0 \leq x \) for all \(x \in S_1 \), then \(u = 0 \) is a lower bound of \(S_1 \). If \(v > 0 \), then \(v \) is not a lower bound of \(S_1 \) because \(v/2 \in S_1 \) and \(v/2 < v \). Therefore \(\inf S_1 = 0 \).

2. \(S_2 \) has lower bounds, so that \(\inf S_2 \) exists. The argument used for \(S_1 \) also shows that \(\inf S_2 = 0 \), but that \(\inf S_2 \) does not belong to \(S_2 \). \(S_2 \) does not have upper bounds, so that \(\sup S_2 \) does not exist.

3. Since \(1/n \leq 1 \) for all \(n \in \mathbb{N} \), then 1 is an upper bound for \(S_3 \). But 1 is a member of \(S_3 \), so that \(1 = \sup S_3 \). (See Exercise 6 below.)

4. \(\sup S_4 = 2 \) and \(\inf S_4 = 1/2 \). (Note that both are members of \(S_4 \).)

5. If \(S \) is bounded below, then \(S' := \{-s : s \in S\} \) is bounded above, so that \(u := \sup S' \) exists. If \(v \leq s \) for all \(s \in S \), then \(-v \geq -s \) for all \(s \in S \), so that \(-v \geq u \), and hence \(v \leq -u \). Thus \(\inf S = -u \).

6. Let \(u \in S \) be an upper bound of \(S \). If \(v \) is another upper bound of \(S \), then \(u \leq v \). Hence \(u = \sup S \).

7. If \(t > u \) and \(t \in S \), then \(u \) is not an upper bound of \(S \).

8. Let \(u := \sup S \). Since \(u \) is an upper bound of \(S \), so is \(u + 1/n \) for all \(n \in \mathbb{N} \). Since \(u \) is the supremum of \(S \) and \(u - 1/n < u \), then there exists \(s_0 \in S \) with \(u - 1/n < s_0 \), whence \(u - 1/n \) is not an upper bound of \(S \).

9. Let \(u := \sup A, v := \sup B \) and \(w := \sup\{u, v\} \). Then \(w \) is an upper bound of \(A \cup B \), because if \(x \in A \), then \(x \leq u \leq w \), and if \(x \in B \), then \(x \leq v \leq w \). If \(z \) is any upper bound of \(A \cup B \), then \(z \) is an upper bound of \(A \) and of \(B \), so that \(u \leq z \) and \(v \leq z \). Hence \(w \leq z \). Therefore, \(w = \sup(A \cup B) \).

10. Since \(\sup S \) is an upper bound of \(S \), it is an upper bound of \(S_0 \), and hence \(\sup S_0 \leq \sup S \).