2.1

1. (a) Apply appropriate algebraic properties to get \(b = 0 + b = (-a + a) + b = -a + (a + b) = -a + 0 = -a. \)
 (b) Apply (a) to \((-a) + a = 0\) with \(b = a \) to conclude that \(a = -(−a) \).
 (c) Apply (a) to the equation \(a + (-1)a = a(1 + (-1)) = a \cdot 0 = 0 \) to conclude that \((-1)a = -a.\)
 (d) Apply (c) with \(a = -1 \) to get \((-1)(−1) = -(−1).\) Then apply (b) with \(a = 1 \) to get \((-1)(−1) = 1.\)

6. Note that if \(q \in \mathbb{Z} \) and if \(3q^2 \) is even, then \(q^2 \) is even, so that \(q \) is even. Hence, if \((p/q)^2 = 6 \), then it follows that \(p \) is even, say \(p = 2m \), whence \(2m^2 = 3q^2 \), so that \(q \) is also even.

7. If \(p \in \mathbb{N} \), there are three possibilities: for some \(m \in \mathbb{N} \cup \{0\} \), (i) \(p = 3m \), (ii) \(p = 3m + 1 \), or (iii) \(p = 3m + 2 \). In either case (ii) or (iii), we have \(p^2 = 3h + 1 \) for some \(h \in \mathbb{N} \cup \{0\} \).

13. If \(a \neq 0 \), then 2.1.8(a) implies that \(a^2 > 0 \); since \(b^2 \geq 0 \), it follows that \(a^2 + b^2 > 0. \)

22. (a) Let \(x := c − 1 > 0 \) and apply Bernoulli's Inequality 2.1.13(c) to get \(c^n = (1 + x)^n \geq 1 + nx \geq 1 + x = c \) for all \(n \in \mathbb{N} \), and \(c^n > 1 + x = c \) for \(n > 1. \)
 (b) Let \(b := 1/c \) and use part (a).

25. Let \(b := c^{1/mn}. \) We claim that \(b > 1; \) for if \(b \leq 1 \), then Exercise 22(b) implies that \(1 < c = b^{mn} \leq b \leq 1, \) a contradiction. Therefore Exercise 24(a) implies that \(c^{1/n} = b^m > b^n = c^{1/m} \) if and only if \(m > n. \)