Show all work. You may not use a calculator.

1. (15%) Define the following terms:
 (a) \(f \) is a function from \(A \) to \(B \).
 (b) \(f : A \rightarrow B \) is one to one.
 (c) \(f : A \rightarrow B \) is onto.

2. (18%) Show each of the following statements is false by finding a counterexample. In each case, assume \(f \) and \(g \) are functions. (Remember: a counterexample for \(P \Rightarrow Q \) is an example in which \(P \) is true and \(Q \) is false.
 (a) If \(f : A \rightarrow B \) then \(f^{-1} \) is a function from \(B \) to \(A \).
 (b) If \(f : A \rightarrow B \) and \(g : C \rightarrow D \), then \(f \cup g \) is a function with range \(B \cup D \).
 (c) If \(f : A \rightarrow B \) and \(g : B \rightarrow C \) and \(g \circ f : A \rightarrow C \), then \(f : A \rightarrow B \).

3. (27%) In the following problem, let \(S = \{ c \mid c \) is a circle in the plane\(\) and \(T = \{ c \mid c \) is a circle in the plane and \(c \) is centered at the origin\(\}. \) For each of the following relations, determine if it is a function. If it is a function, determine if it is 1-1. Also determine if it is onto its codomain. A single point is not a circle. Justify your answers.
 (a) \(R_1 = \{(c, r) \in S \times (0, \infty) \mid r \) is the radius of \(c \}\)
 (b) \(R_2 = \{(r, c) \in (0, \infty) \times S \mid r \) is the radius of \(c \}\)
 (c) \(R_3 = \{(r, c) \in (0, \infty) \times T \mid r \) is the radius of \(c \}\)

4. (10%) Find the domain of the function \(f = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y = \frac{x}{x+1}\}. \) Is this function 1-1? Justify your answer.

5. (15%) Prove: If \(f \) and \(g \) are functions, \(f : A \rightarrow B \) and \(g : B \rightarrow C \), then \(g \circ f : A \rightarrow C \).
 (Note: you do not need to prove \(g \circ f \) is a function. You just need to prove it is one to one.)

6. (15%) Note: \(f \) is an increasing function on \(A \subseteq \mathbb{R} \), if \(f : A \rightarrow \mathbb{R} \) and \(\forall x, y \in A, x < y \implies f(x) < f(y) \). Prove: If \(f : A \rightarrow \mathbb{R} \) is an increasing function, then \(f^{-1} : \{y \mid f(y) \in A \} \rightarrow A \) is an increasing function.
1. a) A function from A to B is a relation from A to B such that
i. dom f = A
ii. If (x, y) and (x, y) ∈ f then y ≠ z.
b) f: A → B is one-to-one if f(x) = f(y) then x = y.
c) f: A → B is onto if range f = B.

2. a) A = \{0, 1\} B = \{2\}
f = \{(0, 2), (1, 2)\}
f⁻¹ = \{(2, 0), (2, 1)\}
f⁻¹ is not a function.
b) A = \{0, 1\} B = \{2\}
c = \{1, 3\} D = \{2, 4\}
f = \{(0, 2), (1, 2)\}
g = \{(1, 4), (3, 2)\}
f ∘ g = \{(0, 2), (1, 2), (1, 4), (3, 2)\} and a function.
c) A = \{1\} B = \{2, 3\} C = \{5\}
f = \{(1, 2)\} not with B
f = \{(2, 5), (3, 5)\}
g f = \{(1, 5)\} not with C.
3. a) \(h \) is a function that is onto but not 1-1.

 Many circles circling plane have the same radius.

b) \(h \) is not a function because given a positive number it matches many circles radii.

c) \(h \) is a function that is 1-1 and onto. There is exactly one circle centered at \((0,0)\) with a fixed radius.

4. \(\operatorname{Dom} f = \{ x \in \mathbb{R} : x \neq \pm \frac{1}{2} \} \)

 Suppose \(\frac{x+1}{x-1} = \frac{y+1}{y-1} \)

c) \((x+1)(y-1) = (x-1)(y+1)\)

 d) \(x^2 + 2x - 1 = x^2 - 2x + x - 1\)

 e) \(2x = -2 + 1\)

 f) \(x = -\frac{1}{2}\).

 Thus \(f \circ h = 1-1\).

5. Assume \((x, z) \text{ and } (y, z) \in \text{Dom} f \).

 Then

 \(g(f(x)) = g(f(y)) \) or \(g(f(\theta)) = g(f(\phi)) \). Since \(g \circ f = 1-1 \),

 \(f(\theta) = \phi \). Then since \(f \circ h = 1-1, x \neq y \). Thus

 \(g \circ f \circ h = 1-1 \).
6. To see that f^{-1} is a function, let

$$(x, z) \text{ and } (y, z) \in f^{-1}.$$ Then $(z, x) \in f$. If $z \preceq y$ then $f(z) \preceq f(y)$ and $x \preceq x \preceq y$. Thus f^{-1} is a function. Since $f^{-1} \cap \text{rng } f = \emptyset$.

Let $x, y \in \text{dom } f^{-1}$ with $(x, z) \in f^{-1}$ and $(y, z) \in f^{-1}$. Then $(z, x) \in f$ and $(z, y) \in f$.

If $s \preceq t$ then $f(s) > f(t)$ and $x \preceq x \preceq y$. If $s \preceq t$ then $f(s) = f(t)$ and $x \preceq x \preceq y$.

Thus $x \preceq y$ with $x, y \in \text{dom } f^{-1}$.

$$f^{-1}(x) < f^{-1}(y).$$