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Abstract. Nil geometry is a homogeneous 3-space derived from the Heisenberg matrix group, where
the matrix multiplication provides the (non-commutative) addition of translations. A challenging prob-
lem is to visualize this geometry in the 3-diemsional Euclidean space. The task was to develop a software
that simulates the effects of translations¥il run-time and lets the user “play” with the model and
demonstrate the most important propertieNaf geometry.

The very first problem is the visualization of the lattice points and lin@§iiln The integer coordinates of
the lattice points are derived through the composition of the three basic translations (in the direction of the
axes of the coordinate-system.) Connecting lattice points by straight lines yields a suitable visualization
of the lattice — although “lines” ifNil geometry are not straight in the Euclidean model, in general.

The second important visualization problem is to draw the geodesidéibfieometry. The created
software enables the user to select the starting point and direction, then an approximating polygon of the
chosen geodesic line is calculated and drawn on the screen.

The third problem is the visualization of the fundamental domain to the minimally presented discrete
translation group oNil. This is a topological tetrahedron with nonplane faces, according to the two
generating translations. In this case, an approximating polyhedron is drawn.

The core of the program code is fully portable. The mathematical proecedures were written in C++,
standard visualization operations (e.g. mapping model coordinates to screen coordinates) are performed
using OpenGL routines. Only basic window management routines use Windows API.

1 TheNil space modelled inE? c P3

In studying magnetic fieldS¥ ERNERHEISENBERGfound his famouseal matrix groupL(R)
whose left (row-column) multiplication by

1 = 2 1 a ¢ 1 a+2x2 c+ab+z
01 y 01 b]l=10 1 b+y (1)
0 01 0 01 0 0 1

provided a new addition of points (translations)
(z,y,2) * (a,b,c) = (a+x,b+y,c+ xb+ 2), (2)

i.e. the translations are not commutative,general.



The matrice¥(z) < L of the form

10
1

K(z) 5 — (0,0, 2), (3)
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however, constitute theyclic centre i.e. each of them is commuting with all elementslof
The elements oK are calledibre translationsas well, and they can be visualized by straight
lines, growing out from the points of théz,y,0) plane. Anyfibre lineis an orbit of a point
(x,y,0) — (x,y, z) under the fibre translatior}s(z), where z € R being varied.

In the following we considel. as projective collineation grougsee [LM92], but here) with
right actionsin homogeneous coordinates as follows

1 x

1

(1,a,b,c) =(l,z+a,y+b,z+bx+c). (4)
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The points ofNil will be visualized inE? and embedded into the projective sp&dewhere the
ideal points (0, u, v, w), with direction vector(u, v, w), will be taken under the collineations
in (4), as well.

Any plane u ~ (ug,u;,us,uz)”, with linear equation for its points (row matrices} ~
(20 2 2%, 23) ~ (1,2,y,2) (“~" means a freedom up to a non-zdRofactor), i.e.

Ug
Uy
0=xu=(2° 2! 2% 2%) =
Uz
us
0 1 2 3 1 5
Uy + Uy + xus + xuz ~ lug + ruy + yus + zus, (5)

is described by a linear form (column matrix, uppefl” means transposition), again up to a
non-zeroR . factor. The collineation in (4) for points induces the corresponding collineation for
planes byinverse matriXwith left action) as follows

Ug 1 —x —y 2y—=z U
Uy 1 0 0 Uy
Us '_> 1 - ug | (6)
us 1 Uus

Namely, this is the criterion, that any incident point and plane will be mapped under the
collineation onto incident point and plane.

Now we can extend the translation grolglefined by formulas (4) and (6) to a larger grddp
of collineations, preserving the fibering, that will be the (orientation presernsong)etry group
of Nil. We indicate how to introduce the rotation about the fibre over the origin aboutangle



by the usual matrix

1 0 0 0
0 cosw sinw 0
0 —sinw cosw 0 (7)
0 0 0 1
leaving invariant thenfinitezimal arc-length-square
(ds)* = (dz)* + (dg)* + (dz)* (8)

as a positive definit quadratic differential form at the origin. By the theorythis will be
extended to the rotation about the fibre over any point:, y, 0) by conjugacy (see (4) and (6))

1 -z —y ay—=z 1 0 0 0 1 2z y =2
0 1 0 0 0 cosw sinw 0 010 0} _ ©)
0 0 1 —r 0 —sinw cosw 0 001 x|
0 0 O 1 0 0 0 1 0 001
1 z(l1—cosw)+ysinw —zsinw+y(l—cosw) —z*sinw + zy(l—cosw)
0 cosw sin w T sinw
0 —sinw COS W —z(l—cosw)
0 0 0 1
Moreover, we have the “pull-back transform”
1 —x —y 2y—2=z
0 1 0 0 o
(0, dx, dy, dz) 00 1 . = (0,dz,dy,dz) (10)
0 0 0 1

for the basis differential forms dtl, =, y, z) and at the origin, respectively. From this we obtain
theinfinitezimal arc-length-squarey (8) at any point oiNil as follows

(dz)? 4 (dy)* + (—xdy + dz)? =

(dz)? + (1 + 2%)(dy)? — 22(dy)(dz) + (d2)* =: (ds)>. (11)

Hence we get the symmetric metric tensor figldn INil by components, furthermore its in-
verse:

1 0 0 . 1 0 0
gij =0 1+a% —z|, Jg* =01 = . (12)
0 —x 1 0 x 1+ 22

ThusNil is ahomogeneous Riemann spadegere the arc-length of any piecewise smooth curve
can be computed by integration as usual for surface curves in the classical differential geometry.



Figure 2.1: A fundamental domaif for Figure 2.2: The minimally presenting
L(Z), representing th&il space fornNil/L(Z). fundamental tetrahedrdh for Nil/L(Z).

2 The discrete translation groupL(Z)

If we substituteintegers,their set is denoted b¥, into the formulas (1), (2) or (4) far, vy, z,
then we getliscrete group actionghose set will be denoted Hy(Z), as integer lattice dNil.

As a surprising phenomenon, we illustrate the actioh@) on Nil in Figure 2.1 by dunda-
mental domair¥¥ = OABC DEFGH. We remark that the Euclidean integer lattice may have a
cube as fundamental domain, whose opposite side faces are mapped uiceetigenerating
translations[M92]. Now (4) provides us the face pairing generators as follows

T1: OBDC=:7' — 7:=AGHE, i.e.

(1,0,b,¢) — (1,1,b,c+Db) 0<b<1, 0<e<1;
T9: OAEC =:7,' — 7:= BFGD; (13)
T3: OAGFB=:7;' — 73:=CEHGD.

Here the bent faces;, ' andr; are remarkable. Of course, e.g. the inverse translatign
3+ 75 ' has also been defined.

These generators induce thre€Z) equivalence classes of edges, each class provides a so-
called defining relation for the generators:

= {OB, AG,FEH,CD} 73Tt =1 (identity may),
— {OA, BF, DG,CE} ToTsTy Tl =1, (14)
— {OC, AE, FG, GH, BD} T172T3TI1T51 = 1’

as indicated in Figure 2.1. Now we only remark that any relation above can be read off a
standard procedure (generalized Poincare algorithm, see [M92]): The image edge domains



belonging to any edge class amount a complete tubular neighbourhood of each edge in the
class.

Figure 2.3: The minimally presenting domain il in two positions (see Figure 2.2).

The vertices ofF also fall into one equivalence class, and the image corner domains amount a
ball-like neighbourhood of each vertex in the class. All these arguments imply that the funda-
mental domainF, with face pairing identification§), represents a compabtil manifold or

Nil space form, denoted Hyil /L(Z).

The last relation of (14) providess = 7,'7; 7,7, as acommutatorgenerating the centre
K(Z) (asin (3)) ofL(Z). Substitutingr; into the first two relations of (14), we getnainimal
presentation:

L(Z) = {7‘1, To— 1=7or ittt = 7'1_17'27'17'2_17'1_17'2_17'17'2} (15)
This minimal presentation has a geometrically realizing fundamental dofnantopological
tetrahedron with face pairing generators : 7, ' +— 7, 79 : 7, © — 7, as above (Figure 2.2).

This Schlegel diagrantas a coordinate realization, analogously to Figure 2.1, with great free-
dom, but this is acomputer graphic problerto solve. We have to produce the vertices7of
with an appropriate starting vertex, first e.g. with the originthen its images as Figure 2.2
dictates:

O, 1:=0", 2:=0"?, 3:=17, 4:=172, 5:=2""  6:= 3"2_1, T:=4"

8: =471, 9:=57 10:=57, 11:=6"1, 12:=77, 13:=87.  (16)
Then we form the edges. An appropriate centre, e.gb#ngcentreof the above vertices of the
facer; !, enables us to form the star-like facg', indeed. Ther; image of the former centre
also provides the star-like facg. Similarly, we can construct the faces' andr, and the

polyhedronZ by computer. A simplicial subdivision df can be produced by the barycentre
of all vertices in (2) as a formal centre f@r.

This new polyhedron type shows how to apply our method in the group theory, and many new
problems arise.



3 Nil geodesics

We are interested in determining tgeodesic curvem our Nil geometry. As it is well-known,
this curves are generally definedres/ing locally minimalstationary)arc lengthbetween their
any two (near enough) points.

Figure 3.1: Geodesic balls INil with different radii.

Then it holds a second order differential equation (system)
i+ g T =0 (17)

where y'(t) =: z(t), v*(t) =: y(t), y*(t) = z(t) are the coordinate components of
the parametrized geodesic curves, upper point means the deri‘g?tlilynthe parametet, as
usual. The Einstein-Schouten index conventions will be applied for recalling the general theory.
Namely, the Levi-Civita connection by

L( 9gy  Ogu  Ogi;
== =% - — = g 18
K 2( oyt + oyi Oy g (18)

can be expressed by (11) and (12) from the metric tensor field, by an easy but lengthy compu-
tation. Finally we obtain the system to solve

(i) T+ yy(—x)+yz=0 with  z(0) = y(0) = 2(0) =
(17) J+ay(r)+32(—=1) =0 #(0) = ccosa  §(0) = csina
(iti)  Z+ay(x? —1)+22(—x) =0 2(0) = w (19)

as initial values. For simplicity we have chosen the origin as starting point, by the homogeneity
of Nil this can be assumed, because of (1) we can transform a curve into an another starting
point.



Figure 3.2: Geodesic balls in théil lattice.

Here we can introduce the arc length parameter

s=+Vc2+w?-t, moreover, w=sind, c=cost, ——<1V< g, (20)

i.e. unit velocity can be assumed.

We remark that there is no more simple relation among the distana@nd the coordinates
(x,y,z), asithas been in the Euclidean space.

In the following form we obtain the solution

w # 0
) 2c . wt (wt n ) ) 2c . wt . (wt+ )
= —sin — — = —sin —sin( —
x > sin—-cos( — +a), Yy sin—-sin( o +a),
c? sin(2wt + 2a) — sin 2«
B=wt-{1+5|(1- ) 21
2(t) = w + 2uw? 2wt + (21)
+<1 B sm(wt)> B (1 _sin(wt + 2a) — sm2a)]} _
wt 2wt
c? sin(wt) 1 — cos(wt) .
:wt'{1+2_w2[(1_ wt >+ wt -sm(wt-l—Qoz)}}
as a helix-like geodesic curve.
c=0 leadsto (z,y,2) = (0,0,wt) as solution;
w=0 leadsto r =c-cosa-t, y=c-sina-t, (22)

1, . 2
z = 56 cosasino -t

as a parabola on the hyperbolic paraboloid surface

2.7 — XY = 0. (23)



Again, a nice computer visualization problem arisBgtermine the sphere of radiusin the
Nil geometry!The Euclidean analogies can help!?

We thank our colleagueé\TTILA BOLcSKEIandISTVAN PROK for preparing the manuscript
and for designing the figures.
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