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Abstract

For a proper cone K ⊂ Rn and its dual cone K∗ the complementary slackness condition
xT s = 0 defines an n-dimensional manifold C(K) in the space { (x, s) | x ∈ K, s ∈ K∗ }. When
K is a symmetric cone, this fact translates to a set of n bilinear optimality conditions satisfied
by every (x, s) ∈ C(K). This proves to be very useful when optimizing over such cones,
therefore it is natural to look for similar optimality conditions for non-symmetric cones. In
this paper we examine several well-known cones, in particular the cone of positive polynomials
P2n+1 and its dual, the closure of the moment cone M2n+1. We show that there are exactly
four linearly independent bilinear identities which hold for all (x, s) ∈ C(P2n+1), regardless of
the dimension of the cones. For nonnegative polynomials over an interval or half-line there are
only two linearly independent bilinear identities. These results are extended to trigonometric
and exponential polynomials.

Introduction

In this paper we examine the complementarity conditions for convex cones. In particular, we are
interested in those cones where complementarity can be expressed using bilinear relations. Our
main result is that the complementarity conditions for the cone of positive polynomials and its
dual, the closure of the moment cone over the real line, cannot be represented by bilinear relations
alone. A similar result holds for the cone of positive polynomials over a given closed interval.

The cone of positive polynomials is a non-symmetric cone with many practical applications
such as shape-constrained regression and the approximation of nonnegative functions (see for
example [2, 11]).
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It is well-known that positive polynomials over the real line are precisely those polynomials
that can be written as the sum of squares of other polynomials. This property directly leads to
the expression of the cone of positive polynomials as a linear image or preimage of the cone of
positive semidefinite matrices, see for example [10]. For instance, optimization over the cone of
positive polynomials of degree 2n can be expressed as the dual of a semidefinite program over n×n
Hankel matrices [3]. However, this approach may significantly increase the size of the problem and
introduce degeneracy. This motivates us to look for solution methods and optimality conditions
which directly apply to the cone of positive polynomials.

As a first step we wish to find as simple complementary slackness conditions as is possible for the
positive polynomials and the moment cones. For instance, in linear programming complementary
slackness conditions are given by xisi = 0 where xi are the primal variables and si are the dual
slack variables. In semidefinite programming (SDP) the complementary slackness theorem is given
by XS + SX = 0, where, again, X is the primal matrix variable and S is the dual slack matrix.
Finally for second order cone programming (SOCP) we have 〈x, s〉 = 0 and s0xi + six0 = 0
(see the next section for more details). All of these relations are bilinear in the primal and dual
slack variables. This property turns out to be essential in the design of primal-dual interior point
algorithms. Furthermore, these bilinear forms make the machinery of certain algebraic structures
available to help the understanding and improvement of such algorithms; this is especially true
for SDP and SOCP.

According to a result of Güler, for every closed, pointed, convex cone K and its dual cone
K∗, the complementarity set C(K), that is, the set of vector pairs (x, s) ∈ R2n, where x ∈ K,
s ∈ K∗ and 〈x, s〉 = 0, is an n-dimensional manifold. In many cases, this fact translates to a
computationally tractable set of n equations fi(x, s) = 0 (i = 1, . . . , n), which form the basis of
complementary slackness theorems in optimization problems. Thus, it is an interesting endeavor
to seek the simplest and most natural expressions for such relations. In fact, if it is at all possible
to represent complementarity relations with bilinear forms, then that would be ideal, because
potentially primal-dual interior point algorithms can be designed for such cones. Furthermore,
bilinear relations induce algebras, and properties of these algebras may shed light on the properties
of these cones and optimization problems over them [12].

In this paper we develop some techniques for proving that for certain cones, bilinear relations
are not sufficient to express complementary slackness. In particular, we show this for positive poly-
nomials, positive trigonometric polynomials, and positive exponential polynomials. The method
we apply relies on results allowing the parametrization of the boundaries of these cones based on
the theory of Chebyshev systems [7].

The paper is structured as follows: in Section 1 we present some fundamental concepts and
results related to complementarity for proper cones, and introduce the notion of algebraic cones.
In Section 2 we present a simple proof template for showing that cones are not algebraic. In the
process we show a few simple cones that are not algebraic. We review necessary background infor-
mation about the cone of positive polynomials P2n+1 and its dual, the closure of the moment cone
M2n+1 in Section 3. Section 4 contains our main results concerning bilinear optimality constraints
where we show that for the cone positive polynomials there are exactly four linearly independent
bilinear complementarity relations. We also show that for the cone of positive polynomials over
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an interval there are exactly two such relations. Finally in Section 5 we use the notion of algebraic
equivalence to show that several more cones of functions are not algebraic.

Notation

For a polynomial represented by the vector of its coefficients p = (p0, . . . , pn) the corresponding
polynomial function is denoted by p(t) = p0 + p1t + p2t

2 + · · · + pntn. For a real t ∈ R and
nonnegative integer n, cn+1(t) denotes the moment vector (1, t, . . . , tn)>.

Throughout the paper we adopt the following convention: if for a range of indices the lower
bound is greater than the upper bound, the range is considered to be empty.

The convex hull of a set S ⊂ Rn is denoted by conv(S), the closure of S is denoted by S̄.

The linear space spanned by vectors v1, . . . ,vk is denoted by span(v1, . . . ,vk).

The inner product of vectors x and s is denoted by 〈x, s〉 = xT s.

The parity of an integer m is denoted by m (mod 2) =
{

0 if m is even
1 if m is odd

.

For a matrix A = (aij)m×n, vec(A) def= (a11, . . . , an1, a12, . . . , an2, . . . , amn)>. For two column

vectors u and v, their Kronecker product is defined to be u⊗ v def= vec(uv>).

1 Algebraic Cones

Let K be a proper cone in Rn (that is, a closed, pointed, and convex cone with nonempty interior
in Rn), and let

K∗ = {z | 〈x, z〉 ≥ 0, ∀x ∈ K}

be its dual cone. A pair of vectors (x, s), x ∈ K, s ∈ K∗ is said to satisfy the complementary
slackness conditions with respect to K if 〈x, s〉 = 0. We are interested in the following set:

Definition 1 Let K be a proper cone, and K∗ its dual. Then the set

C(K) = {(x, s) | x ∈ K, s ∈ K∗, 〈x, s〉 = 0}

is called the complementarity set of K.

Since for every proper cone (K∗)∗ = K, it is immediate from the definition that C(K) and
C(K∗) are congruent: one can be obtained from the other by exchanging the first and last n
coordinates.

The following theorem underlies the complementary slackness theorem for all convex optimiza-
tion problems.

Theorem 2 For each proper cone K in Rn, C(K) is an n-dimensional manifold homeomorphic
to Rn.
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A simple proof of this statement due to O. Güler [6] is given in Appendix.

To see the implications of this result for optimization problems over affine images or pre-images
of proper cones, consider the following pair of dual cone-LP problems:

Primal
inf 〈c,x〉
s.t. Ax = b

x ∈ K

Dual
sup 〈y,b〉
s.t. A>y + s = c

s ∈ K∗
(1)

It is easy to see that for any feasible solution x of the Primal problem and any feasible solution
(y, s) of the Dual problem the quantities 〈c,x〉 − 〈y,b〉 and 〈x, s〉 are equal and nonnegative.
The strong duality theorem for cone-LP problems states the following: Under certain regularity
conditions, if both the Primal and Dual problems are feasible, then inf and sup can be replaced by
min and max. Moreover, the optimal objective values are equal, i.e., 〈c,x∗〉−〈y∗,b〉 = 〈x∗, s∗〉 = 0.
It follows that at the optimum we have (x∗, s∗) ∈ C(K). Since C(K) ∈ R2n is n-dimensional, it is
often possible to obtain a system of equations

Ax = b
A>y + s = c
fi(x, s) = 0 for i = 1, . . . , n

(2)

which is a square system, where fi(x, s) = 0 are the complementarity equations. Many primal-
dual algorithms for linear, second order and semidefinite programming problems, are based on
strategies for solving this system of equations.

Let us examine some familiar examples.

Example 1 (Nonnegative orthant) When K is the nonnegative orthant, K∗ = K. In this case
if x and s contain only nonnegative components, and 〈x, s〉 = 0, then we must have xisi = 0
for i = 1, . . . , n. This is the basis of the familiar complementary slackness theorem in linear
programming.

Example 2 (Positive semidefinite cone) If K is the cone of real, symmetric positive semidef-
inite matrices, then K∗ = K. If both X and S are real symmetric positive semidefinite matrices,
and 〈X, S〉 =

∑
ij XijSij = 0, then it is easy to show that the matrix product XS = 0, or equiv-

alently XS + SX = 0. This is the basis of the complementary slackness theorem in semidefinite
programming.

Example 3 (Second order cones) Let K ∈ Rn+1 be the cone defined by all vectors x such
that x0 ≥ ‖x‖, where x = (x0, x1, . . . , xn), x = (x1, . . . , xn), and ‖ · ‖ is the Euclidean norm. This
cone is also self-dual. Now if x, s ∈ K and 〈x, s〉 = 0, then from Cauchy-Schwarz-Bunyakovsky
inequality it follows that x0si + xis0 = 0 for i = 1, . . . , n. These relations along with 〈x, s〉 = 0
are the basis of the complementary slackness theorem for the second order cone programming
problem.
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Example 4 (Lp cones) Generalizing the previous example, suppose instead the cone Kp consists
of vectors x such that x0 ≥ ‖x‖p, where ‖ · ‖p is the Lp norm for some real number p > 1. Then
it is known that the dual cone is Kq where 1

p + 1
q = 1. In this case one can deduce from Hölder’s

inequality that if x ∈ Kp and s ∈ Kq and 〈x, s〉 = 0, then sq
0 |xi|p − xp

0 |si|q = 0 for i = 1, . . . , n.

Example 5 (L1 and L∞ cones) A limiting case of the previous example is when p = 1 (and
thus q = ∞). Here K1 consists of vectors x such that x0 ≥ |x1| + · · · + |xn|, and K∞ consists of
vectors s where s0 ≥ maxi |si|. In this case, if x ∈ K1, s ∈ K∞ and 〈x, s〉 = 0, then xi(s0−|si|) = 0
for i = 1, . . . , n.

Recall that an algebra is a linear space with an additional multiplication operation: x · y = z
defined on its vectors. The main requirement is that the components of z be expressed as bilinear
functions of x, and y; in algebraic terms this multiplication must satisfy the distributive law;
see for example [12]. Therefore, there are matrices Qi such that zi = x>Qiy. If for a cone the
complementarity relations can be exclusively expressed by bilinear forms, then, since these bilinear
forms also define an algebra with multiplication, say “·”, the complementarity relations may be
characterized by x · s = 0. The machinery of this algebra may be useful in studying optimization
problems over these cones. This motivates the following definitions.

Definition 3 Let K ∈ Rn be a proper cone. The n×n matrix Q is a bilinear optimality condition
for K if every (x, s) ∈ C(K) satisfies x>Qs = 0.

Note that the set of all bilinear optimality conditions for K, denoted by Q(K), is a linear
subspace of Rn×n.

Definition 4 A proper cone K ⊆ Rn is called algebraic if there exist at least n linearly indepen-
dent bilinear optimality conditions for K.

Remark 5 An algebraic cone K ⊆ Rn may have more than n bilinear optimality conditions, as
the following example shows. Let K be the three-dimensional second order cone (see Example 3),
and let

Q1 =

1 0 0
0 1 0
0 0 1

 , Q2 =

0 1 0
1 0 0
0 0 0

 , Q3 =

0 0 1
0 0 0
1 0 0

 , Q4 =

0 0 0
0 0 1
0 −1 0

 .

Then every (x, s) ∈ C(K) satisfies x>Qis = 0, i = 1, 2, 3, 4. These four equations are linearly
independent.

Since C(K) and C(K∗) are congruent, the cone K∗ is algebraic if and only if K is.

From the examples above we observe that the cones in Examples 1, 2, and 3 are algebraic.
Note that in Example 5, even though K1 and K∞ are polyhedral, the complementarity relations
are not completely bilinear due to the absolute values. In Theorem 11 we show that K1 and K∞
do not have any non-trivial bilinear complementarity relations.
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The largest class of cones known to be algebraic are the symmetric cones. These are cones
that are self-dual and homogeneous (that is, for any two points in the interior of the cone, there
is a linear automorphism of the cone mapping the first point to the second one [4]). The cones in
Examples 1, 2, and 3 are all symmetric. In addition, the cones of positive semidefinite complex
Hermitian and quaternion Hermitian matrices are also symmetric. The second order cone, and the
cones of positive semidefinite symmetric, complex Hermitian and quaternion Hermitian matrices,
along with an exceptional 27 dimensional cone, are essentially the only symmetric cones; any other
symmetric cones can be decomposed into direct sums of these five classes of cones.

Symmetric cones are intimately related to Euclidean Jordan algebras, see [4] and [8]. In such
algebras the binary operation “◦” is the abstraction of the operation X ◦S = XS+SX

2 in matrices.
The properties of these algebras have played a major role in all aspects of optimization over such
cones. In particular, design and analysis of interior point algorithms, duality, complementarity,
and design of numerically efficient algorithms have been greatly simplified using the machinery of
Jordan algebras. This is particularly true in the design of primal-dual interior point algorithms
[5], [1].

There is an easy way to manufacture algebraic cones from other algebraic cones.

Definition 6 The proper cones K and L are algebraically equivalent if there is a nonsingular
(one-to-one and onto) linear transformation A such that AK = L.

If two cones are algebraically equivalent, then one is algebraic if and only if the other one is.
In fact, in the next section we introduce the concept of bilinearity rank of a cone and prove that
this rank is invariant among all algebraically equivalent cones.

In the next two sections we develop techniques to prove certain cones are not algebraic.

2 A simple approach for proving cones are not algebraic

Recall that Q(K) denotes the linear space of all bilinear optimality conditions for K, and consider
the linear space

L(K) def= span{sx> | (x, s) ∈ C(K)}.

Proposition 7 For every proper cone K we have

dim(Q(K)) = co-dim(L(K)).

Proof: Follows immediately from the identity x>Qs = 〈sx>, Q>〉.
Since by definition X ∈ L(K) implies trace X = 〈X, I〉 = 0, the co-dimension of L(K) as a

subspace of Rn×n is at least 1. Now if there are m linearly independent bilinear forms Qi such
that 〈X, Qi〉 = 0 for all X ∈ L(K), then co-dim(L(K)) ≥ m. Therefore, if we show n2− k linearly
independent matrices X ∈ L(K), then this proves that there can be at most k bilinear forms in
any characterization of C(K). In particular, K is algebraic if and only if co-dim(L(K)) ≥ n. Note
that, as Remark 5 shows, it is possible that co-dim(L(K)) > n for an algebraic cone K.
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Definition 8 The quantity dim(Q(K)) = co-dim(L(K)) is called the bilinearity rank of K and is
denoted by β(K).

The manifolds C(K) and C(K∗) are congruent for every proper cone K, implying β(K) = β(K∗).
Furthermore, we have:

Lemma 9 If K and L are algebraically equivalent proper cones then β(K) = β(L).

Proof: Let A be a nonsingular linear transformation such that AK = L. Then the dual cone of
AK is the cone A−>K∗. Furthermore, Qi (i = 1, . . . ,m) define linearly independent bilinear com-
plementarity conditions for K if and only if A−>QiA

> (i = 1, . . . ,m) define linearly independent
bilinear complementarity conditions for AK.

To derive our main results, we use the following simple fact.

Proposition 10 If there are k pairs of vectors (xi, si) ∈ C(K) for i = 1, . . . , k, such that the
matrices six>i are linearly independent, then β(K) ≥ k. In particular, if k > n2 − n, then K is
not algebraic.

These results lead to the following template for proving certain cones are not algebraic: Suppose
K is a proper cone in Rn.

Step 1 Select a finite set S of orthogonal pairs of vectors (x, s), where x is a boundary vector of
K and s is a boundary vector of K∗.

Step 2 Form the matrix T whose rows are x⊗ s = vec(sx>), (x, s) ∈ S.

Step 3 If rankT > n2 − n, then K is not algebraic. More generally, β(K) ≤ n2 − rank T .

To see how this template works let us show that the dual cones K1,K∞ ⊆ Rn+1 from Example 5
are not algebraic for n ≥ 2.

Theorem 11 β(K1) = β(K∞) = 1.

Proof: As before, we assume that vectors are indexed from zero. We begin by introducing the
following notation:

• ei = (0, . . . , 0, 1, 0 . . . , 0)> ∈ Rn+1, with the single nonzero element in the ith position
(i = 0, . . . , n),

• f = (1, . . . , 1) ∈ Rn+1,

• fi = (1, . . . , 1,−1, 1, . . . , 1) ∈ Rn+1, with all entries equal to 1 except in the ith position
(i = 0, . . . , n),

• fij = (1, . . . , 1,−1, 1, . . . , 1,−1, , 1, . . . 1) ∈ Rn+1 with all entries equal to 1 except in the ith
and jth positions (i, j = 0, . . . , n).

7



The extreme rays of K1 are the 2n vectors e0 ± ei (i = 1, . . . , n), while the extreme rays of
K∞ are the 2n vectors of the form (1,±1,±1, . . . ,±1)>. Specifically, for every i, j = 1, . . . , n, the
vectors f , fi, and fij are among the extreme vectors of K∞.

Let the set S (as described in Step 1 of the previous template) consist of the following orthogonal
pairs (x, s) from C(K1):

• (e0 + ei, fi), i = 1, . . . , n,

• (e0 − ei, f), i = 1, . . . , n,

• (e0 + ei, fij), i, j = 1, . . . , n, i 6= j,

• (e0 − ei, fj), i, j = 1, . . . , n, i 6= j,

and let the matrix T be constructed as in Step 2. The following vectors can be obtained as linear
combinations of the rows of T .

r0j = e0 ⊗ ej =
1
4
(
(e0 + e1)⊗ f1 − (e0 + e1)⊗ f1j + (e0 − e1)⊗ f − (e0 − e1)⊗ fj

)
j = 1, . . . , n,

rij = ei ⊗ ej =
1
4
(
(e0 + ei)⊗ fi − (e0 + ei)⊗ fij − (e0 − ei)⊗ f + (e0 − ei)⊗ fj

)
i, j = 1, . . . , n, i 6= j

rii = −e0 ⊗ e0 + ei ⊗ ei =
∑

1≤j≤n
j 6=i

r0j −
1
2
(
(e0 + ei)⊗ fi + (e0 − ei)⊗ f

)
, i = 1, . . . , n

ri0 = ei ⊗ e0 = −(e0 + ei)⊗ f +
n∑

j=1

r0j −
∑

1≤j≤n
j 6=i

rij − rii, i = 1, . . . , n.

Let R ∈ R[(n+1)2−1]×(n+1)2 denote the matrix consisting of rows r01, r02, . . . , r0n, r10, . . . , rnn.
Notice that by deleting the first column of R we obtain the identity matrix I(n+1)2−1. The rows of
R were obtained as linear combinations of the rows of T , which in turn implies rank T ≥ (n+1)2−1.
In accordance with Step 3 of the previous template this completes the proof.

The template we used to prove Theorem 11 is a special case of the following, formally more
general, framework:

Step 1 Select a set S of orthogonal pairs of vectors (x, s), where x is a boundary vector of K and
s is a boundary vector of K∗.

Step 2 Consider the set T = {x⊗ s | (x, s) ∈ S}.

Step 3 If dim(span(T )) > n2 − n, then K is not algebraic. More generally, β(K) ≤ n2 −
dim(span(T )).

After presenting some necessary structural results in Section 3, we shall use these steps to
prove our main results in Section 4.
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3 Positive Polynomials and Moment Cones

Let us first introduce the cones of positive polynomials and moment cones:

Definition 12 The cone of positive polynomials (also referred to as cone of nonnegative polyno-
mials) of degree 2n

P2n+1
def=
{
(p0, . . . , p2n) ∈ R2n+1 | p(t) = p0 + p1t + p2t

2 + · · ·+ p2nt2n ≥ 0 ∀t ∈ R
}

consists of the coefficient vectors of nonnegative polynomials of degree 2n. Similarly, for real
numbers a < b, the cone of positive polynomials (or nonnegative polynomials) over the interval
[a, b] of degree n is the cone

P [a,b]
n+1

def=
{
(p0, . . . , pn) ∈ Rn+1 | p(t) = p0 + p1t + p2t

2 + · · ·+ pntn ≥ 0 ∀t ∈ [a, b]
}

.

The moment cone of dimension 2n + 1 is defined as

M2n+1
def= conv ({c2n+1(t) | t ∈ R}) , where c2n+1(t)

def= (1, t, t2, . . . , t2n)>.

Similarly, the (n + 1)-dimensional moment cone over [a, b] is defined as

M[a,b]
n+1

def= conv ({cn+1(t) | t ∈ [a, b]}) .

Remark 13 This is not the traditional definition of the moment cone. See [7] (Ch.VI) for the
original definition and proof of its equivalence with the one given above.

The cone of positive polynomials and the moment cone are closely related [7]:

Proposition 14 P∗2n+1 = M̄2n+1. Similarly, (P [a,b]
n+1)

∗ = M[a,b]
n+1.

We will repeatedly use the following simple observation.

Proposition 15 If p ∈ Rn+1 is the coefficient vector of a polynomial p, and t is real number,
then p(t) = 〈p, cn+1(t)〉. In particular, p(t) = 0 if and only if 〈p, cn+1(t)〉 = 0.

In order to use the templates presented in Section 2 and prove that a cone K is not algebraic,
it is useful to know the boundary or extreme rays of the cones K and K∗. The extreme rays of
M2n+1, and M[a,b]

n+1 are well known:

Proposition 16 ([7])

1. The extreme vectors of M2n+1 are the vectors αc(t) for every α > 0 and t ∈ R, and the
vectors (0, . . . , 0, α)> for every α ≥ 0.

2. The extreme rays of M[a,b]
n+1 are the vectors αc(t) for every α ≥ 0 and t ∈ [a, b].

9



Finally, in the subsequent sections we will also use the following observations:

Proposition 17 ([7])

1. Every real root of a nonnegative polynomial in P2n+1 is a multiple root with even multiplicity.

2. For polynomials in P [a,b]
n+1 every real root in the open interval (a, b) is a multiple root with

even multiplicity.

4 Main Results

In this section we show our main results, namely that neither the cone of positive polynomials over
the real line, nor the cone of positive polynomials over a closed interval are algebraic. Moreover,
we give the exact bilinearity rank for these cones.

To prove our main results we need the following elementary fact from linear algebra.

Lemma 18 Let k be a positive integer and let B = {b1, . . . , bk} be a set of linearly independent
vectors in a real vector space. For a set {m1, . . . ,mk} ⊂ span(B) consider the coordinates αi,j ∈
R (i, j = 1, . . . , k) uniquely defined by the representations mi =

∑k
j=1 αi,jbj. (We refer to this as

the B-representation of mi.) If the conditions

αi,i 6= 0 for all 1 ≤ i ≤ k,
αi,j = 0 for all 1 ≤ i < j ≤ k

hold, then the set {m1, . . . mk} is also linearly independent.

Proof: The claim follows immediately from the observation that the matrix (αi,j)k×k is lower
triangular with a nonzero diagonal, and hence non-singular.

We are going to use the following, formally more general version of the above lemma:

Corollary 19 Let B ⊂ R[x1, . . . , xn] be a finite set of linearly independent polynomials and con-
sider a set M ⊂ span(B) with coordinates αm,b (m ∈ M, b ∈ B) defined by the representations
m =

∑
b∈B αm,bb. Assume that there exists an injection ϕ : B →M and a linear order ≺ on ϕ(B)

such that

αϕ(b),b 6= 0 for all b ∈ B,

αϕ(b),d = 0 for all b, d ∈ B satisfying ϕ(b) ≺ ϕ(d).

Then dim (span (M(Rn))) = |B|, where M(Rn) def= {(m(x))m∈M |x ∈ Rn}.

Proof: Let k = |B|. It is well known that for a vector P = (p1, . . . , pk) ∈ (R[x1, . . . , xn])k con-
sisting of linearly independent polynomials we have dim (span (P (Rn))) = k, therefore it suffices
to find a k-element linearly independent subset of M. As ϕ is injective, there exists an indexing
B = {b1, . . . , bk} such that ϕ(b1) ≺ · · · ≺ ϕ(bk). Let mi = ϕ(bi) ∈ M (for all i = 1, . . . , k). It
is easy to verify that the sets {b1, . . . , bk} and {m1, . . . ,mk} satisfy the conditions of Lemma 18.
Consequently the set {m1, . . . ,mk} ⊂ M is linearly independent, which implies our claim.
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4.1 Positive polynomials over the real line

Theorem 20 The cone P2n+1 is not algebraic, unless n = 1. More specifically, for every n,
β(P2n+1) ≤ 4.

The second claim immediately implies the first. Note that when n = 1, we do have an algebraic
cone algebraically equivalent to the cone of 2× 2 positive semidefinite matrices.

Proof: Consider the matrix valued functions M : Rn 7→ R(2n+1)×(2n+1) defined as

M(t1, . . . , tn) = cp>,

where p ∈ P2n+1 is the coefficient vector of the polynomial p(x) =
∏n

k=1(x − tk)2, and c =
c2n+1(t1) = (1, t1, . . . , t

2n
1 ) is the moment vector corresponding to the first root of p. It is easy to

verify that the entries of M = (mi,j)2n
i,j=0 satisfy the polynomial equation

2n∑
j=0

mi,jx
j ≡ ti1

n∏
k=1

(x− tk)2. (3)

The polynomial p(x) is clearly nonnegative everywhere, and c is a moment vector, furthermore,
by Proposition 15, 〈p, c〉 = 0. Therefore, following the general template of Section 2 (with p
and c playing the roles of x and s, and M(Rn) playing the role of T ), the theorem follows if
dim(span(M(Rn))) = (2n+1)2−4. We show this equality using the sufficient condition presented
in Corollary 19, with the set {mi,j} playing the role of set M.

Let us define the n-variate polynomials Π(k, `) by

Π(k, `)(t1, . . . , tn) def=
∑

0≤α2,...,αn≤2
α2+···+αn=`

tk1

n∏
j=2

2(αj mod 2)t
αj

j , (4)

whenever 0 ≤ k ≤ 2n+2 and 0 ≤ ` ≤ 2n−2; for values of k and ` outside these ranges let us define
Π(k, `) to be the zero polynomial. Let B denote the set {Π(k, `) | 0 ≤ k ≤ 2n+2, 0 ≤ ` ≤ 2n− 2}.
It follows from the definition that |B| = (2n+1)2− 4, and that B is linearly independent, because
no two polynomials share a common monomial. It remains to show that M is indeed a subset of
span(B), and exhibit the injection ϕ and the linear order ≺ of Corollary 19.

The coefficient of x2n−k−` in the polynomial
∏n

j=1(x − tj)2 is
∑2

k=0 Π(k, `). From this obser-
vation it follows immediately that span(B) contains the entries of M ; more specifically, for every
0 ≤ i, j ≤ 2n,

mi,j = Π(i, 2n− j) + Π(i + 1, 2n− 1− j) + Π(i + 2, 2n− 2− j). (5)

We now introduce an injection ϕ : B 7→M by defining its inverse (where it exists): let mi,j be
the image of the polynomial

ϕ−1(mi,j) = qi,j
def=


Π(i, 2n− j) j ≥ max{2, i}
Π(i + 2, 2n− 2− j) j ≤ min{i− 1, 2n− 2}
not defined otherwise

. (6)
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In particular, we assign a polynomial to each entry mi,j of M except for m0,0, m0,1, m1,1, and
m2n,2n−1, and we assign different polynomials to different entries of M , because if qi1,j1 = qi2,j2 for
some (i1, j1) 6= (i2, j2) and i1 ≤ j1, then j1 ≥ i1, i2− 1 ≥ j2, i1 = i2 +2, and 2n− j1 = 2n− 2− j2,
a contradiction, as the sum of these inequalities reduces to −1 ≥ 0. Consequently, each Π(k, `) is
equal to qi,j for precisely one pair (i, j), therefore ϕ is indeed an injection.

Equation (5) shows that the coefficient of qi,j in the B-representation of mi,j is 1, so using the
notation of Corollary 19, αϕ(Π(k,`)),Π(k,`) = 1 for all Π(k, `) ∈ B.

Let us define a linear order � on ϕ(B) in the following way: mi1,j1 � mi2,j2 precisely when one
of the following three conditions holds:

1. i1 − j1 ≥ 1 > i2 − j2;

2. i1 − j1 ≥ 1, i2 − j2 ≥ 1, and either i1 > i2, or i1 = i2 but j1 < j2;

3. i1 − j1 < 1, i2 − j2 < 1, and either j1 < j2, or j1 = j2 but i1 > i2.

An easy case analysis using Equations (5) and (6) shows that if mi1,j1 � mi2,j2 , then the coefficient
of qi1,j1 in the B-representation of mi2,j2 is zero:

1. If i1− j1 ≥ 1 > i2− j2, then Equations (5) and (6) show that the three terms of mi1,j1 have
higher degree than those of mi2,j2 , so in particular Π(i1 + 2, 2n− 2− j1) does not appear in
the B-representation of mi2,j2 .

2. If both i1 − j1, i2 − j2 ≥ 1, then i1 + 2 > i2 + 2 or 2n − 2 − j1 > 2n − 2 − j2, and by
Equation (5) Π(i1 + 2, 2n− 2− j1) does not appear in the B-representation of mi2,j2 .

3. If both i1−j1, i2−j2 ≤ 0, then i1 > i2 or 2n−j1 > 2n−j2, and by Equation (5), Π(i1, 2n−j1)
does not appear in the B-representation of mi2,j2 .

The injection mi,j 7→ qi,j and the linear order � satisfy the conditions of Corollary 19, therefore,
by Equation (6),

dim(span(M(Rn))) =
∣∣B∣∣ = (2n + 1)2 − 4,

which completes the proof.

4.2 Polynomials over a closed interval

We prove our theorem separately for polynomials of even and odd degree, since the different
representations of the extreme rays would make a unified proof difficult. The main idea of the
proofs is the same as in the proof of Theorem 20, however, the sets M and B are different, and
the linear order ≺ also needs a more complicated definition.

In some cases it will be useful to restrict ourselves to the case when [a, b] = [0, 1]. This is
without loss of generality: the same number of linearly independent bilinear optimality conditions
exist for P [a,b]

n+1 as for P [0,1]
n+1 , as the following proposition shows.
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Proposition 21 For every positive integer n and a < b, the cone P [a,b]
n+1 is algebraically equivalent

to P [0,1]
n+1.

Proof: The polynomial p(t) is nonnegative over [a, b] if and only if q(t) = p
(

t−a
b−a

)
is nonneg-

ative over [0, 1]. Furthermore, the coefficients of q(t) can be obtained by a nonsingular linear
transformation from of coefficients of p.

4.2.1 Polynomials of even degree

Theorem 22 The cone P [a,b]
2n+1 is not algebraic. More specifically, for every n, β(P [a,b]

2n+1) ≤ 2.

Proof: Consider the matrix valued functions M : Rn+2 7→ R(2n+1)×(2n+1) defined as

M(t1, . . . , tn;α, β) = c2n+1(t1)p> + αc2n+1(a)p>a + βc2n+1(b)p>b ,

where p,pa,pb ∈ P [a,b]
2n+1 are the coefficient vectors of the polynomials p(x) =

∏n
k=1(x − tk)2,

pa(x) = x−a, and pb(x) = b−x, respectively. It is easy to verify that the entries of M = (mi,j)2n
i,j=0

satisfy the polynomial equation

2n∑
j=0

mi,jx
j ≡ ti1

n∏
k=1

(x− tk)2 + αai(x− a) + βbi(b− x). (7)

The polynomials p(x), pa(x) and pb(x) are clearly nonnegative over [a, b], and by Proposition 15,
〈pa, c2n+1(a)〉 = 〈pb, c2n+1(b)〉 = 〈p, c2n+1(t1)〉 = 0. Consequently, following the general template
of Section 2 (with p, pa and pb playing the role of x, and c2n+1(t) playing the role of s, and
M(Rn+2) playing the role of T ), the theorem follows if dim(span(M(Rn+2))) = (2n + 1)2 − 2.
Finally, we will show this equality using the sufficient condition presented in Corollary 19, with
the set {mi,j} playing the role of set M.

For the rest of the proof, let us assume that a = 0, b = 1; Proposition 21 guarantees that this
is without loss of generality.

With a slight abuse of notation, let us define the polynomials Π(k, `) as in the proof of
Theorem 20 (see Equation (4) and the subsequent paragraph), except that now every Π(k, `) has
formally two additional variables, α and β, even though they do not depend on these variables.
Let M be the set of entries of the matrix M , and let B be the set

B =
{
α, β

}
∪
{
Π(k, `) | 0 ≤ k ≤ 2n + 2, 0 ≤ ` ≤ 2n− 2

}
.

The elements of B are considered as polynomials of n + 2 variables, t1, . . . , tn, α, β. Again, it is
immediate that the set B is linearly independent. It follows from these definitions that for every
0 ≤ i, j ≤ 2n,

mi,j = Π(i, 2n− j) + Π(i + 1, 2n− 1− j) + Π(i + 2, 2n− 2− j) + m′
i,j , (8)
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where

m′
i,j =


β j = 0
α− β i = 0, j = 1
−β i ≥ 1, j = 1
0 otherwise

. (9)

We now introduce an injection ϕ : B 7→M by defining its inverse (where it exists): let mi,j be
the image of the polynomial

ϕ−1(mi,j) = qi,j
def=



Π(i, 2n− j) j ≥ max{2, i}
Π(i + 2, 2n− 2− j) j ≤ min{i− 1, 2n− 2}
β i = 0, j = 0
α i = 0, j = 1
not defined otherwise

. (10)

In particular, we assign a polynomial to each entry except for m1,1 and m2n,2n−1, and we assign
different polynomials to different entries of M , by an argument essentially identical to that in
the proof of Theorem 20. Consequently, ϕ is indeed an injection, and Equations (8) and (9) show
that the coefficient of qi,j in the B-representation of mi,j is 1.

Let us define a linear order � on ϕ(B) in the following way: mi1,j1 � mi2,j2 precisely when one
of the following four conditions holds:

1. (i1, j1) = (0, 1);

2. i1 − j1 ≥ 1 > i2 − j2;

3. i1 − j1 ≥ 1, i2 − j2 ≥ 1, and either i1 > i2, or i1 = i2 but j1 < j2;

4. i1 − j1 < 1, i2 − j2 < 1, and either j1 < j2, or j1 = j2 but i1 > i2.

An easy case analysis using Equations (8), (9), and (10) shows that if mi1,j1 � mi2,j2 , then the
coefficient of qi1,j1 in the B-representation of mi2,j2 is zero.

This case analysis is essentially identical to the one in the proof of Theorem 20, except that
now we also have to take care of q0,0 and q0,1. Hence we examine four cases in addition to the
ones in the proof of Theorem 20:

1. If (i1, j1) = (0, 1), then qi1,j1 = α, and this polynomial has a nonzero coefficient exclusively
in the B-representation of m0,1.

2. The case (i2, j2) = (0, 1) is impossible.

3. If (i1, j1) = (0, 0), then only the fourth condition is satisfied by (i1, j1), so mi1,j1 � mi2,j2

implies i2 − j2 < 1, which in the light of (10) yields j2 ≥ 2. Consequently, by (9), q0,0 = β
has zero coefficient in the B-representation of mi2,j2 .
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4. If (i2, j2) = (0, 0), then mi1,j1 � mi2,j2 implies i1 − j1 ≥ 1, so the degree of qi1,j1 is larger
than the degree of mi2,j2 . Consequently, qi1,j1 has zero coefficient in the B-representation of
m0,0.

5. The cases in which both (i1, j1) and (i2, j2) are different from (0, 0) and (0, 1) are settled the
same way as in the proof of Theorem 20.

The injection mi,j 7→ qi,j and the linear order � satisfy the conditions of Corollary 19, therefore,
by Equation (10),

dim(span(M(Rn+2))) =
∣∣B∣∣ = (2n + 1)2 − 2,

which completes the proof.

4.2.2 Polynomials of odd degree

We first prove our claim for the case n = 1.

Lemma 23 The cone P [1,6]
4 is not algebraic. More specifically, β(P [1,6]

4 ) ≤ 2.

Proof: Following the first version of the template given in Section 2, we present a set S of 14
pairs of vectors (x, s) ∈ C(P [1,6]

4 ) such that the vectors vec(sx>) are linearly independent.

For every i = 1, . . . , 6, let p(i)(x) = (x − 1)(x − i)2, q(i)(x) = (6 − x)(x − i)2, and define two
additional polynomials p(0)(x) = (x− 1) and q(0)(x) = (6− x). Now let S be the set consisting of
the following orthogonal pairs:

•
(
p(i), c2n+2(i)

)
i = 1, . . . , 6,

•
(
q(i), c2n+2(i)

)
i = 1, . . . , 6,

•
(
p(0), c2n+2(1)

)
,

•
(
q(0), c2n+2(6)

)
.

The fact that the matrix T defined in the template using the above pairs indeed has rank 14
can be verified by direct calculation.

Theorem 24 The cone P [a,b]
2n+2 is not algebraic. More specifically, for every n, β(P [a,b]

2n+2) ≤ 2.

Proof: For n = 1, using Proposition 21, our claim follows from the previous lemma. From now
on, let us assume n ≥ 2. Consider the matrix valued functions M : R2n+2 7→ R(2n+2)×(2n+2), where
the entries of M(t1, . . . , tn; s1, . . . , sn;α, β) = (mi,j)2n+1

i,j=0 are defined as

M(t1, . . . , tn; s1, . . . , sn;α, β) = c2n+2(t1)p> + c2n+2(s1)r> + αc2n+2(a)p>a + βc2n+2(b)p>b ,
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where p, r,pa,pb ∈ P
[a,b]
2n+2 are the coefficient vectors of the polynomials p(x) = (x− a)

∏n
k=1(x−

tk)2, r(x) = (b− x)
∏n

k=1(x− sk)2, pa(x) = x− a, and pb(x) = b− x, respectively. The entries of
M = (mi,j)2n+1

i,j=0 satisfy the polynomial equation

2n+1∑
j=0

mi,jx
j ≡ ti1(x− a)

n∏
k=1

(x− tk)2 + si
1(b− x)

n∏
k=1

(x− sk)2 + αai(x− a) + βbi(b− x). (11)

The polynomials p(x), pa(x), pb(x), and r(x) are nonnegative over [a, b], and by Proposition 15,

〈pa, c2n+2(a)〉 = 〈pb, c2n+2(b)〉 = 〈p, c2n+2(t1)〉 = 〈r, c2n+2(s1)〉 = 0.

Consequently, according to the general template of Section 2, the theorem follows if dim(span(M(R2n+2))) =
(2n + 2)2 − 2. Finally, we will show this equality using the sufficient condition presented in
Corollary 19.

Let us define the (2n + 2)-variate polynomials Π1(k, `) and Π2(k, `) by

Π1(k, `)(t1, . . . , tn; s1, . . . , sn;α, β) def=
Π(k, `)(t1, . . . , tn)− aΠ(k, `− 1)(t1, . . . , tn), and

Π2(k, `)(t1, . . . , tn; s1, . . . , sn;α, β) def=
b Π(k, `− 1)(s1, . . . , sn)−Π(k, `)(s1, . . . , sn),

(12)

where Π(k, `) is defined by Equation (4) for 0 ≤ k ≤ 2n+3, 0 ≤ ` ≤ 2n−2, otherwise Π(k, `) = 0.

For the rest of the proof, let us assume that a = 0, b = 1; Proposition 21 guarantees that this
is without loss of generality.

Let M be the set of entries of M , and let B denote the set

B =
{
α, β

}
∪
{
Π(k, `)(t1, . . . , tn) | 3 ≤ k ≤ 2n + 3, 0 ≤ ` ≤ 2n− 2, k + ` ≥ 2n + 1

}
∪

∪
{
Π(k, `)(s1, . . . , sn) | 3 ≤ k ≤ 2n + 3, ` = 2n− 2

}
∪

∪
{
Π(k, `)(s1, . . . , sn) | 2n ≤ k ≤ 2n + 1, 0 ≤ ` ≤ 1

}
∪

∪
{
Π(k, `)(s1, . . . , sn) | 0 ≤ k ≤ 2n− 1, 0 ≤ ` ≤ 2n− 2, k + ` ≤ 2n

}
.

Since n ≥ 2, the last three sets in the union are disjoint. It follows from the definition that
the set B is linearly independent, because no two polynomials share a common monomial. The
coefficient of x2n+1−k−` in the polynomial (x − a)

∏n
j=1(x − tj)2 is

∑2
k=0 Π1(k, `). Similarly, the

coefficient of x2n+1−k−` in the polynomial (b − x)
∏n

j=1(x − sj)2 is
∑2

k=0 Π2(k, `). From this
observation it follows immediately that span(B) contains the entries of M ; more specifically, for
every 0 ≤ i, j ≤ 2n + 1,

mi,j = Π1(i, 2n + 1− j) + Π1(i + 1, 2n− j) + Π1(i + 2, 2n− 1− j)+
+ Π2(i, 2n + 1− j) + Π2(i + 1, 2n− j) + Π2(i + 2, 2n− 1− j)+
+ m′

i,j ,

(13)
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where m′
i,j is defined in Equation (9).

We now introduce an injection ϕ : B 7→M by defining its inverse (where it exists): let mi,j be
the image of the polynomial

ϕ−1(mi,j) = qi,j =



α i = 0, j = 1
Π(i + 2, 2n− 1− j)(t1, . . . , tn) 1 ≤ j ≤ min{i, 2n− 1}
Π(i + 2, 2n− 2)(s1, . . . , sn) i ≥ 1, j = 0
β i = 0, j = 0
Π(i, 2n + 1− j)(s1, . . . , sn) j ≥ 3, j > min{i, 2n− 1}
not defined otherwise

. (14)

In particular, we assign a polynomial to each entry except for m0,2 and m1,2, and we assign
different polynomials to different entries of M , by an argument essentially identical to that in the
proof of Theorem 20. Consequently, each polynomial in B is equal to qi,j for at most one pair
(i, j), and Equations (13) and (14) show that (assuming a = 0 and b = 1) the coefficient of qi,j in
the B-representation of mi,j is 1 or −1.

Let us define a linear order � on ϕ(B) in the following way. Let us say that a polynomial qi,j

is of type k for some k = 1, . . . , 5, if it is defined in the kth branch of the right-hand side of (14).
Then, mi1,j1 � mi2,j2 for some (i1, j1) 6= (i2, j2) precisely when one of the following four conditions
holds:

1. qi1,j1 is of smaller type than qi2,j2 ;

2. qi1,j1 and qi2,j2 are both of type 2, and either i1 > i2, or i1 = i2 but j1 < j2;

3. qi1,j1 and qi2,j2 are both of type 3, and i1 > i2;

4. qi1,j1 and qi2,j2 are both of type 5, and either j1 < j2, or j1 = j2 but i1 > i2.

Clearly this is indeed a linear order on ϕ(B). An easy case analysis using (13), (9), and (14) shows
that if mi1,j1 � mi2,j2 , then the coefficient of qi1,j1 in the B-representation of mi2,j2 is zero:

1. If (i1, j1) = (0, 1), then qi1,j1 = α, and this polynomial has a nonzero coefficient exclusively
in the B-representation of m0,1. In the remaining cases we assume (i1, j1) 6= (0, 1).

2. The case (i2, j2) = (0, 1) is impossible.

3. If (i1, j1) = (0, 0), then mi1,j1 � mi2,j2 implies j2 ≥ 3 (with a similar argument as in the
proof of Theorem 22), so q0,0 = β has zero coefficient in the B-representation of mi2,j2 .

4. If (i2, j2) = (0, 0), then mi1,j1 � mi2,j2 implies i1 ≥ 1, so qi1,j1 = Π(k, `) with some k ≥ 3.
Consequently, qi1,j1 has zero coefficient in the B-representation of m0,0. In the remaining
cases we assume both (i1, j1) and (i2, j2) are different from (0, 0) and (0, 1).

5. The cases in which qi1,j1 and qi2,j2 are of the same type are settled the same way as in the
last two cases of the case analysis in the proof of Theorem 20.
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6. The case when qi1,j1 is of type 2 or 3, and qi2,j2 is of type 4, is settled the same way as in
the proof of Theorem 20, by a simple degree argument.

7. The only remaining case is when qi1,j1 is of type 2 and qi2,j2 is of type 3. Then i1+2 > i2+2,
and hence qi1,j1 = Π(i1 + 2, 2n− 1− j) has coefficient zero in the B-representation of mi2,j2 .

We conclude that the injection mi,j 7→ qi,j and the linear order � satisfy the conditions of
Corollary 19, therefore, by Equation (14),

dim(span(M(R2n+2))) =
∣∣B∣∣ = (2n + 2)2 − 2,

which completes the proof.

4.3 Lower bounds

To simplify the proof of the validity of bilinear optimality conditions, we will use the following
lemma.

Lemma 25 The bilinear optimality condition x>Qs = 0 is satisfied by every (x, s) ∈ C(K) if and
only if it is satisfied by every (x, s) ∈ C(K) such that x is an extreme vector of K and s is an
extreme vector of K∗.

Proof: The only if direction is obvious. To show the converse implication, observe that every
x ∈ K and s ∈ K∗ can be expressed as a sum of finitely many extreme vectors of K and K∗,
respectively. Furthermore, if x =

∑k
i=1 xi and s =

∑`
j=1 sj , then 〈x, s〉 = 0 if and only if

〈xi, sj〉 = 0 for every 1 ≤ i ≤ k, 1 ≤ j ≤ `. Therefore, if 〈x, s〉 = 0, and the optimality condition
is satisfied by every orthogonal pair of extreme vectors, then 〈xi, sj〉 = 0 for every 1 ≤ i ≤ k,
1 ≤ j ≤ `, and

x>Qs =

(
k∑

i=1

xi

)>
Q

∑̀
j=1

sj

 =
k∑

i=1

∑̀
j=1

x>i Qsj = 0.

We are now ready to show that the upper bounds on the number of linearly independent
bilinear optimality conditions given in Theorems 20, 22, and 24 are sharp.

Theorem 26 For every integer n ≥ 1, β(P2n+1) = 4.
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Proof: We have already proven β(P2n+1) ≤ 4. Now we prove that the following bilinear optimality
conditions satisfied by every (p, c) ∈ C(P2n+1):

2n∑
i=0

pici = 0, (15)

2n∑
i=1

ipici−1 = 0, (16)

2n−1∑
i=0

(2n− i)pici = 0, (17)

2n−1∑
i=0

(2n− i)pici+1 = 0. (18)

It is easy to see that these conditions are indeed linearly independent. By Lemma 25 it is
enough to show that the conditions are satisfied for pairs of vectors (p, c) ∈ C(P2n+1) where c is
an extreme vector of M̄2n+1.

If c = c2ne2n = (0, . . . , 0, c2n) with some c2n > 0 and 〈p, e2n〉 = 0, then (15), (16), and (17)
trivially hold, since all the terms on the left-hand sides these equations are zeros. Furthermore,
the left-hand side of (18) simplifies to p2n−1c2n, which must be zero, because otherwise p2n−1 6= 0,
p2n = 0, and p would be a polynomial of odd degree, which cannot be nonnegative over the entire
real line.

If c is an extreme vector of M2n+1, then, by Proposition 15, c = c(t0) for some t0 ∈ R, and c
is orthogonal to p if and only if p(t0) = 0. But this equation is equivalent to (15), since

p(t0) =
2n∑
i=0

pit
i
0 =

2n∑
i=0

pici.

By Proposition 17, every root of p has even multiplicity, therefore (p, c) ∈ C(K) implies p′(t0) = 0,
which is equivalent to (16), as

p′(t0) =
2n∑
i=1

piit
i−1
0 =

2n∑
i=1

ipici−1.

Furthermore, if p(t0) = p′(t0) = 0, then 2np(t0)− t0p
′(t0) = 0, which translates to (17), since

2np(t0)− t0p
′(t0) =

2n∑
i=0

2npit
i
0 −

2n∑
i=1

piit
i
0 =

2n∑
i=0

2npici −
2n∑
i=1

ipici =
2n∑
i=0

(2n− i)pici.

Finally, p(t0) = p′(t0) = 0 also implies 2nt0p(t0)− t20p
′(t0) = 0, which is equivalent to (18):

2nt0p(t0)− t20p
′(t0) =

2n∑
i=0

2npit
i+1
0 −

2n∑
i=1

piit
i+1
0 =

2n∑
i=0

2npici+1 −
2n∑
i=1

ipici+1 =
2n−1∑
i=0

(2n− i)pici+1.
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Theorem 27 For every integer n ≥ 1 and real numbers a < b, β(P [a,b]
n+1) = 2.

Proof: We have already proven β(P [a,b]
n+1) ≤ 2. Now we prove that the following bilinear optimality

conditions satisfied by every (p, c) ∈ C(P [a,b]
n+1):

n∑
i=0

pici = 0, (19a)

n−1∑
i=0

(
(a + b)(n− i)pici − (n− i)pici+1 + ab(i + 1)pi+1ci

)
= 0. (19b)

It is easy to see that these conditions are indeed linearly independent. By Lemma 25 it is
enough to show that the conditions are satisfied for pairs of vectors (p, c) ∈ C(P [a,b]

n+1) where c is
an extreme vector of M̄n+1.

Let p(x) be an extreme polynomial of degree n, nonnegative over [a, b], and p its coefficient
vector. By Proposition 15, an extreme c = c(t0) is orthogonal to p if and only if p(t0) = 0.
Therefore, (p, c) ∈ C(P [a,b]

n+1) implies p(t0) = 0, which is equivalent to (19a), as in the proof of the
previous theorem. By Proposition 17, every root of p has even multiplicity, except possibly for a
and b, and hence

(t0 − a)(b− t0)p′(t0) = 0.

Finally, this last equality and p(t0) = 0 together imply

n(a + b− t0)p(t0)− (t0 − a)(b− t0)p′(t0) = 0,

equivalent to (19b):

n(a + b− t0)p(t0)−(t0 − a)(b− t0)p′(t0) =

=
n∑

i=0

n(a + b− t0)pit
i
0 −

n∑
i=1

(t0 − a)(b− t0)ipit
i−1
0

=
n∑

i=0

n(a + b)pit
i
0 −

n∑
i=0

npit
i+1
0 +

n∑
i=1

ipit
i+1
0 −

n∑
i=1

(a + b)ipit
i
0 +

n∑
i=1

abipit
i−1
0

=
n−1∑
i=0

(n− i)(a + b)pit
i
0 −

n−1∑
i=0

(n− i)pit
i+1
0 +

n∑
i=1

abipit
i−1
0

=
n−1∑
i=0

(
(n− i)(a + b)pici − (n− i)pici+1 + ab(i + 1)pi+1ci

)
.

5 More non-algebraic cones

As we have seen in Lemma 9, applying a nonsingular linear transformation A to a cone K preserves
its bilinearity rank. In addition, any change of basis for the cone of polynomials will result in a cone
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algebraically equivalent to it. Thus, for instance, the set of vectors of coefficients of nonnegative
polynomials expressed in any orthogonal polynomial basis (e.g., Laguerre, Legendre, Chebyshev,
etc.), or the Bernstein polynomial basis

(
n
k

)
tk(1−t)n−k for k = 0, . . . , n are algebraically equivalent

to the cone of nonnegative polynomials in the standard basis. This fact is useful in numerical
computations since the standard basis is numerically unstable and we may need to work with a
more stable basis.

We have already stated in Proposition 21 that for all a < b and n, the cones P [a,b]
n+1 and P [0,1]

n+1

are algebraically equivalent. More generally:

Observation 28 Let f(t) be a function whose domain is ∆ ⊆ R and whose range is Ω ⊆ R; also
suppose that the set of functions

{
1, f, f2, . . . , fn

}
is linearly independent. Then the cone

Pf =

a = (a0, . . . , an)

∣∣∣∣∣∣
n∑

j=0

ajf
j(t) ≥ 0 for all t ∈ ∆


is algebraically equivalent to the cone of ordinary polynomials nonnegative over Ω.

From this observation and using change of basis as needed we can prove algebraic equivalence
of a number of cones of nonnegative functions over well-known finite dimensional bases with P or
P [0,1]. Below we present a partial list. Most of the techniques used below are quite simple, and
they are used by Karlin and Studden [7] and Nesterov [9] for other purposes.

5.1 Rational functions

The basis
{
t−m, t−m+1, . . . , tn−1, tn

}
for nonnegative even integers n and m spans the set of ratio-

nal functions with a degree n numerator and denominator tm. Since
∑n

i=−m pit
i = t−m

∑n+m
i=0 pit

i,
the cone of rational functions with numerator of degree n and denominator tm nonnegative over
∆ = R\{0} is algebraically equivalent to the cone of nonnegative polynomials of degree n + m,
and therefore its bilinearity rank is 4.

5.2 Nonnegative polynomials over [0,∞)

Consider the basis B =
{
tn, tn−1(1 − t), . . . , t(1 − t)n−1, (1 − t)n

}
of polynomials of degree n.

Clearly the cone {
(p0, . . . , pn)

∣∣∣∣∣
n∑

i=0

pit
i(1− t)n−i ≥ 0 ∀ t ∈ [0, 1]

}
,

which consists of coefficient vectors of polynomials nonnegative over [0, 1], expressed in basis B,
is algebraically equivalent to P [0,1]

n+1 . On the other hand we have:

Lemma 29 (Nesterov [9]) A polynomial p0(1− t)n + p1t(1− t)n−1 + · · ·+ pntn is nonnegative
over [0, 1] if and only if the polynomial p0 + p1t + · · ·+ pntn is nonnegative over [0,∞].
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This follows from ∑
k

pkt
k(1− t)n−k = (1− t)n

∑
k

pk

(
t

1−t

)k

and the fact that [0, 1] is mapped to [0,∞] under f(t) = t
1−t . As a result we get

Corollary 30 The cone P [0,∞]
n+1 is algebraically equivalent to P [0,1]

n+1. Therefore β
(
P [0.∞]

)
= 2 for

every n ∈ N.

5.3 Cosine polynomials

Consider the cone

Pcos
n+1

def= {c ∈ Rn+1 |
n∑

k=0

ck cos(kt) ≥ 0 for all t ∈ R}

To relate this cone to the cones we have discussed before, first observe that cos(kt) can be expressed
as an ordinary polynomial of degree k of cos(t). This follows immediately from applying the
binomial theorem to the identity

(
cos(t) + i sin(t)

)k = cos(kt) + i sin(kt):

cos(kt) =
bk/2c∑
j=0

(
k

2j

)
cosk−2j(t)

(
1− cos2(t)

)j (20)

sin(kt) = sin(t)
bk/2c∑
j=0

(
k

2j + 1

)
cosk−2j−1(t)

(
1− cos2(t)

)j (21)

From (20) we see that expansion of cos(kt) is a polynomial of cos(t) of degree k. Thus, every vector
c representing the cosine polynomial c(t) =

∑n
k=0 ck cos(kt) is mapped to a vector p representing

the ordinary polynomial p(s) =
∑n

k=0 pks
k through the identity

∑n
k=0 ck cos(kt) = p

(
cos(t)

)
.

Furthermore, this correspondence between c and p is one-to-one and onto, since for each k the
function cos(kt) is a polynomial of degree k in cos(t) the matrix mapping c to p is lower triangular
with nonzero diagonal entries. Now c(t) = p

(
cos(t)

)
≥ 0 for all t if and only if p(s) ≥ 0 for all

s ∈ [−1, 1]. Recalling that P [−1,1] is algebraically equivalent to P [0,1] we have proved

Lemma 31 The cone Pcos
n+1 is algebraically equivalent to P [0,1]

n+1. Therefore β
(
Pcos

n+1

)
= 2 for every

n ∈ N.

5.4 Trigonometric polynomials

Consider the cone

Ptrig
2n+1 =

{
r ∈ R2n+1 | r0 +

n∑
k=1

(
r2k−1 cos(kt) + r2k sin(kt)

)
≥ 0 for all t ∈ R

}
=
{
r ∈ R2n+1 | r0 +

n∑
k=1

(
r2k−1 cos(kt) + r2k sin(kt)

)
≥ 0 for all t ∈ (−π, π)

}

22



To transform a trigonometric polynomial r(t) = r0 +
∑n

k=1

(
r2k−1 cos(kt)+ r2k sin(kt)

)
into one of

the classes of polynomials already discussed we make a change of variables t = 2arctan(s). With
this transformation we have

sin(t) =
2s

1 + s2

cos(t) =
1− s2

1 + s2

Using (20-21) we can write
r(t) = p1

(
1−s2

1+s2

)
+ 2s

1+s2 p2

(
1−s2

1+s2

)
(22)

where p1 and p2 are ordinary polynomials of degree n, and n − 1, respectively; p1(·) is obtained
from (20) and p2(·) is obtained from (21). Multiplying by (1 + s2)n we see that

r(t) = (1 + s2)−np(s)

for some ordinary polynomial p. Substituting (20) and (21), the polynomial p can be expressed
in the following basis:{

(1+s2)n, (1+s2)n−1(1−s2), . . . , (1−s2)n
}
∪
{

s(1+s2)n−1, s(1−s2)n−2(1−s2), . . . , s(1−s2)n−1
}

It is straightforward to see that this is indeed a basis. We need to simply observe that those
terms that are not multiplied by s form a basis of polynomials with even degree terms, and those
that involve s form a basis of polynomials with odd degree terms. Therefore, the correspondence
between vector of coefficients r of the trigonometric polynomial r(t) and the vector of coefficients
p of the ordinary polynomial p(s) in the above basis is one-to-one and onto. Furthermore, since
the function tan(t/2) maps (−π, π) to R, it follows that

Lemma 32 The cone P trig
n+1 is algebraically equivalent to Pn+1. Therefore, β

(
P trig

n+1

)
= 4 for every

n ∈ N.

5.5 Exponential polynomials

One could ask if the results of trigonometric polynomials extend to hyperbolic functions sinh(·)
and cosh(·). The situation is actually simpler here. Consider the cone

Pexp def=
{
e |

n∑
k=−m

ek exp(kt) ≥ 0 for all t ≥ 0
}

First, there is no loss of generality if we assume m = 0 since every such polynomial can be
mutltiplied by exp(mt). Now clearly e(t) = e0 + e1 exp(t) + · · · + en exp(nt) ≥ 0 for all t ∈ R if
and only if the ordinary polynomial e0 + e1s + · · · + ensn is nonnegative over [0,∞]. Recalling
that P [0,∞] is algebraically equivalent to P [0,1] we have shown that

Lemma 33 The cone Pexp is algebraically equivalent to P [0,1]. Therefore, β
(
Pexp

)
= 2.
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6 Conclusion

Our main motivation for this research came from our work on solving statistical nonparametric
estimation problems using polynomials and polynomial splines where the estimated functions
themselves required to be nonnegative, [2] and [11]. Our goal was to see if there is an easier
way than formulating these problems as semidefinite programs. In particular are there efficient
algorithms for cone-LP problems over positive polynomials? This questions led us to consider
the simplest form of complementarity relations for positive polynomials, and we have found that
bilinear complementarity relations alone are not sufficient.

The central question remaining open is whether there are algebraic cones other than symmetric
cones and their algebraic equivalents?

Another direction is to investigate more sets of cones and estimate their bilinearity rank. For
example one can examine all cones of positive functions over Chebyshev systems, and cones of
functions of several variables which can be expressed as sums of squares of functions over a given
finite set of functions.
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Appendix: Proof of Theorem 2, due to O. Güler [6]

Recall the following basic fact.

Proposition 34 Let S ⊆ Rn be a closed convex set and a ∈ Rn. Then there is a unique point x =
ΠS(a) in S which is closest to a, i.e., there is a unique point x ∈ S such that x = argminy∈S ‖a−
y‖. Furthermore, if S is a closed convex cone, then 〈x,x− a〉 = 0.

The unique point above is called the projection of a to S.

We need to show a continuous bijection between the complementarity set C(K) of K and Rn

whose inverse is also continuous.

Let ϕ : Rn → Rn ×Rn be defined by ϕ(a) = (x, s), where x = ΠK(a) and s = x− a. Clearly ϕ
is continuous; we first show that ϕ(a) ∈ C(K) for every a. By definition ΠK(a) ∈ K, and by the
above proposition 〈x, s〉 = 0. It remains to show that s ∈ K∗.

For an arbitrary u ∈ K \ {x}, define the convex combination uα = αu + (1 − α)x where
0 ≤ α ≤ 1, and let ζ(α) = ‖a−uα‖2. Then ζ is a differentiable function on the interval [0, 1], and
min0≤α≤1 ζ(α) is attained at α = 0. Hence dζ

dα

∣∣∣
α=0

≥ 0.

Now, using 〈x, s〉 = 0, we have

dζ

dα

∣∣∣∣
α=0

= 2〈s,u− x〉 = 2〈s,u〉 ≥ 0

for every u ∈ K\{x}. Note that the inequality 〈s,u〉 ≥ 0 also holds for u = x, implying 〈s,u〉 ≥ 0
for every u ∈ K. Therefore s ∈ K∗.

Consider now the continuous function ϕ̄ : C(K) → Rn defined by ϕ̄(x, s) = x− s. To conclude
the proof we show that ϕ̄ ◦ ϕ = ιRn and ϕ ◦ ϕ̄ = ιC(K) , where ιS denotes the identity function of
the set S. The first one is easy:

(ϕ̄ ◦ ϕ)(a) = ϕ̄ (ΠK(a),ΠK(a)− a) = a.
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To show ϕ ◦ ϕ̄ = ιC(K), it suffices to prove that ΠK(x− s) = x for every (x, s) ∈ C(K).

Suppose on the contrary that there is a point u ∈ K such that ‖a − u‖ < ‖a − x‖, where
a = x− s. Then, again using 〈x, s〉 = 0,

0 > 〈a− u,a− u〉 − 〈a− x,a− x〉 = 〈x− s− u,x− s− u〉 − 〈s, s〉 = ‖x− u‖2 + 2〈s,u〉,

in contradiction with 〈s,u〉 ≥ 0, which completes the proof. �
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