Directly Controlled: T_{AVG}, $P_{impulse}$, RPM, Level

Not Directly Controlled: T_{sat}, P_{rel}, m_{Steam}, P_{SG}, m_{FW}
CONTROLLING T_{avg} IMPLIES CONTROLLING P_{SG}

$$\hat{Q}_{avg} \approx (UA)_{SG} (T_{AVG} - T_{sat}) \text{ where } T_{sat} = T_{Sat}(P_{SG})$$

Given T_{avg} and $\hat{Q}_{RX} = \hat{Q}_{avg} \cong \dot{W}_{r} / \eta \Rightarrow \Delta T$ across S/G Fixed $\Rightarrow T_{sat}$ of steam fixed $\Rightarrow P_{SG}$ fixed

To maintain P_{SG} constant at higher powers implies

$T_{avg} \uparrow \Rightarrow \rho_{MOD} \downarrow \Rightarrow \rho(-)$

$T_{RX} \uparrow \Rightarrow \rho_{RX} \downarrow \Rightarrow \rho(-)$

Negative reactivity must be compensated for.

Solution \Rightarrow Withdraw control rods.

To maintain P_{SG} constant at lower powers implies

$T_{avg} \downarrow \Rightarrow \rho_{MOD} \uparrow \Rightarrow \rho(+)$

$T_{RX} \downarrow \Rightarrow \rho_{RX} \uparrow \Rightarrow \rho(+)$

Positive reactivity must be compensated for.

Solution \Rightarrow Insert control rods.
Controlling P_{imp} implies controlling Electrical Power

Electrical Power \Rightarrow Reactor Power (P_{rel}) \Rightarrow Turbine Impulse Pressure \Rightarrow Core Av. Coolant Temp. (T_{avg})
Turbine Control

![Diagram of Turbine Control Valve](image)

P_{impulse} Controller

Set Elec. $P_{rel} \Downarrow \Rightarrow$ Set Prog. $P_{impulse} \Downarrow \Rightarrow (P_{impulse} - \text{Prog } P_{impulse}) > 0 \Rightarrow$ Close down on turbine control valve $\Rightarrow P_{impulse} \Downarrow$

How is Prog $P_{impulse}$ determined?

Require $RPM_{T/G} = \text{Prog. } RPM_{T/G}$ (1800 @ all Elec. $P_{rel} \Rightarrow$ AC frequency)

With fixed $RPM_{T/G}$ and Elec. $P_{rel} \Rightarrow P_{impulse}$ uniquely specified

RPM Controller

$(RPM_{T/G} - \text{Prog } RPM_{T/G}) > 0 \Rightarrow$ Close down on control valve $\Rightarrow P_{impulse} \Downarrow \Rightarrow RPM_{T/G} \Downarrow$

Error signal for T/G controller controls both $P_{impulse}$ and $RPM_{T/G}$ utilizing Turbine Control Valves
Automatic Control System:

Operator sets Electrical Power (Load or Demand Setpoint) ⇒ Ref P_{imp}
TCV moves which automatically sets high pressure turbine impulse pressure

Impulse Pressure ⇒ Automatically sets Programmed T_{AVG} ⇒ Automatically moves control rods in or out to make $T_{AVG} = \text{Programmed } T_{AVG}$

Speed of rod motion $\propto |T_{AVG} - \text{Programmed } T_{AVG}|$

ISSUE: Time lags in system can result in undershoot/overshoot

Example: Step load increase
SOLUTION: Add an “anticipatory” signal based on the difference between turbine output and reactor thermal power

\[E_1 = \frac{\dot{W}_{\text{load}}}{(\dot{W}_{\text{load}})_{\text{ref}}} - \frac{\dot{Q}_{\text{RX}}}{(\dot{Q}_{\text{RX}})_{\text{ref}}} \]

\[E_2 = \text{Programmed } T_{\text{avg}} - T_{\text{avg}} \]

\[E = G_1 E_1 + G_2 E_2 \]

Rod Speed \(\propto |E| \)
S/G Level Control (UTUBE)

Programmed level to assure S/G tubes covered to assure adequate heat transfer and separators not flooded.

![Graph](image)

1. **S/G level correct.**

 If Steam Mass Flow Rate = F/W Mass Flow Rate \Rightarrow S/G level constant.

 If S/G level correct, adjust F/W Flow Rate such that it equals Steam Flow Rate.

 Adjustment done by valve and/or variable speed F/W Pump

2. **S/G level not correct.**

 Adjust F/W Flow Rate (adjust FCV) to bring steam generator level to programmed value.

 \[
 E_1 = \dot{m}_{FW} - \dot{m}_{steam} \quad \text{Anticipatory}
 \]

 \[
 E_2 = Level_{SG} - \text{Programmed Level}_{SG}
 \]

 \[
 E = G_1E_1 + G_2E_2
 \]
PRESSURIZER CONTROL

The pressurizer does not impact RCS response to a load maneuver, but must be controlled to maintain safety margins and system integrity.

Prz level

Electrical $P_{rel} \Rightarrow$ Programmed $T_{AVG} \Rightarrow$ Primary loop Av. Water Density \Rightarrow Primary Loop Water Volume \Rightarrow Unique Prz Level (Programmed Prz Level)

Prz level maintained by CVCS

Prz level \geq Prog. Prz level \Rightarrow CVCS Charging Rate \leq CVCS Letdown Rate.

<table>
<thead>
<tr>
<th>Automatic Control System</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_{avg} \Rightarrow$ Programmed Prz. Level \Rightarrow CVCS Rate dependent upon Prz. Level \leq Programmed Prz. Level</td>
</tr>
<tr>
<td>When $T_{avg} \rightarrow$ and Prz Level = Prog. Prz level \Rightarrow CVCS Charging Rate = CVCS Letdown Rate.</td>
</tr>
</tbody>
</table>
Prz Pressure

- Objective: Hold Primary System P constant $\Rightarrow P_{\text{set point}}$
- Assume SS operation $\Rightarrow P = P_{\text{set point}}$

Prz Heaters on sufficient to offset heat losses from Prz and spray circulation (some to keep Prz chemistry same as rest of RCS & Minimize Thermal Shock)

Electrical P_{rel} \uparrow (↓) $\Rightarrow T_{\text{AVG}}$ ↓ (↑) initially \Rightarrow Prz level ↓ (↑) \Rightarrow Prz P ↓ (↑)

Automatic Control System

$$
\begin{align*}
(Prz P - P_{\text{Set Point}}) > 0 \Rightarrow & \text{Prz Heaters Output } \downarrow \\
(Prz P - P_{\text{Set Point}}) < 0 \Rightarrow & \text{Prz Heaters Output } \uparrow
\end{align*}
$$

If $(Prz P - P_{\text{Set Point}}) > \Delta P_{\text{Set Point(1)}}$ \Rightarrow Prz Sprays \uparrow \Rightarrow Prz Steam Condenses \Rightarrow Prz P ↓

If $(Prz P - P_{\text{Set Point}}) < \Delta P_{\text{Set Point(2)}}$ \Rightarrow Backup Heaters On \Rightarrow Prz P ↑

Longer Term Effect:

Elec. P_{rel} \uparrow \downarrow \Rightarrow Prog. T_{AVG} \uparrow \downarrow \Rightarrow T_{AVG} \uparrow \downarrow via T_{AVG} control \Rightarrow ...
Figure 7-6. NSSS Integrated Plant Control System