A Fast Continuation Method for the Ornstein-Zernike Equations

C. T. Kelley
Joint work with
Monte Pettitt, Yannis Kevrekidis, Liang Qiao

Department of Mathematics
Center for Research in Scientific Computation
North Carolina State University
Raleigh, North Carolina, USA
NCSU
November 2, 2004
Supported by NSF, ARO.
Outline

- The Ornstein-Zernike (OZ) Equations
- Fast solvers for compact fixed point problems
 Application to OZ + uniqueness problems
- Path following: introduction
 Nonlinear solvers
 Pseudo-arclength continuation
- Multilevel method.
- Results
OZ Equations: O-Z, 1914

Used to calculate probability distributions of atoms in fluid states. Unknowns are $h, c \in C[0, L]$.

- h: radial pair correlation function, observable
- c: direct correlation function, defined by IE

Integral Equation:

$$h(r) - c(r) - \rho(h \ast c)(r)$$

where

$$(h \ast c)(r) = \int_{R^3} c(\|r - r'\|) h(\|r'\|) dr'.$$
Algebraic Closure Constraint

\[\exp(-\beta U(r) + h(r) - c(r)) - h(r) - 1 = 0. \]

where \(u \) is the Lennard-Jones potential.

\[U(r) = 4\varepsilon \left(\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right). \]
Parameters

Data are parameters

- ρ: number density, sometimes unknown
- $\beta = 1/(\text{absolute temperature} \times \text{Boltzmann’s constant})$
- ε: well depth of the potential
- σ: determines size of the particles
Discretization

- Uniform grid on $[0, L]$
- Trapezoid rule for integration
- Discrete Hankel transform for evaluation of integrals

\[
\mathcal{H}(h)(k) = 4\pi \int_0^\infty \frac{\sin(kr)}{kr} h(r) r^2 dr
\]

and

\[
h \ast c = \mathcal{H}^{-1}(\hat{h} \hat{c}).
\]

- Fast evaluation via FFT
Solution: $\rho = 0.2, \sigma = 2; \varepsilon = 0.1; \beta = 10; L = 9$
Reduction to single equation

Let $g = h - c$, then the closure constraint expresses c as a function of g.

$$c(r) = c(g(r)) = \exp(-\beta U(r) + g(r)) - g(r) - 1.$$

The integral equation is

$$h - \rho c * h = c.$$

Take Hankel transforms

$$\hat{h} - \rho \hat{h} \hat{c} = \hat{c},$$

and obtain $\hat{h} = \hat{c} / (1 - \rho \hat{c})$.

$g \rightarrow c \rightarrow h$ leads to...

\[h = h(c(g)) = c(g) + \mathcal{K}(g). \]

Subtract c and obtain a fixed point problem for g.

\[g = h(c(g)) - c(g) = \mathcal{K}(g). \]

\mathcal{K} is a nonlinear integral operator with compact Fréchet derivative.
Alternative: reduce to single equation in c

- $c \rightarrow h(c)$ via solution of integral equation
- $h(c) - c = G(c)$, G compact
- $K(c) = \exp(-\beta U - G(c)) - G(c) - 1$

Compact fixed point problem:

$$c = K(c)$$
More General OZ Equations

Unknowns $h, c, \rho, \in C[0, L]$

\[
h(r) = \exp(-\beta U(r) + h(r) - c(r)) - 1
\]

\[
h(r) = c(r) + \int_0^r c(r - r') \rho(r') h(r') \, dr'
\]

\[
\rho(r) = A_1 \exp\left(-\beta U(r) + \int_0^r \rho(r - r') c(r') \, dr'\right).
\]

Also matrix-valued unknowns.
Compact Fixed Point Problems

We’re worried about problems like

\[F(u) = u - \mathcal{K}(u) = 0, \text{ on a Banach space } X, \]

where

- \(\mathcal{K} \in C^1_{LIP}(X). \)
- \(\mathcal{K}' \in \text{Com}(X). \)
- Compactness will lead to fast solvers.
How to exploit compactness

- Discretization
How to exploit compactness

• Discretization
 • Almost every reasonable scheme works, but
How to exploit compactness

• Discretization
 • Almost every reasonable scheme works, but
 • some approximations to \mathcal{H}' converge in norm.
How to exploit compactness

- Discretization
 - Almost every reasonable scheme works, but
 - some approximations to \mathcal{H}' converge in norm.

- Solvers
How to exploit compactness

- Discretization
 - Almost every reasonable scheme works, but
 - some approximations to \mathcal{H}' converge in norm.

- Solvers
 - Krylov solvers need no preconditioning (in theory).
How to exploit compactness

- Discretization
 - Almost every reasonable scheme works, but
 - some approximations to \mathcal{H}' converge in norm.

- Solvers
 - Krylov solvers need no preconditioning (in theory).
 - Multilevel methods are easy to design.
How to exploit compactness

- Discretization
 - Almost every reasonable scheme works, but
 - some approximations to \mathcal{H}' converge in norm.

- Solvers
 - Krylov solvers need no preconditioning (in theory).
 - Multilevel methods are easy to design.
 - No smoothers are needed.
How to exploit compactness

- Discretization
 - Almost every reasonable scheme works, but
 - some approximations to \mathcal{H}' converge in norm.

- Solvers
 - Krylov solvers need no preconditioning (in theory).
 - Multilevel methods are easy to design.
 - No smoothers are needed.

- Fast evaluation ($O(N\log(N))$) is common.
How to exploit compactness

- Discretization
 - Almost every reasonable scheme works, but
 - some approximations to \mathcal{H}' converge in norm.

- Solvers
 - Krylov solvers need no preconditioning (in theory).
 - Multilevel methods are easy to design.
 - No smoothers are needed.

- Fast evaluation ($O(N \log(N))$) is common.

- Newton-Krylov, Newton-MG nonlinear solvers work with no surprises (most of the time).
World’s Easiest Example

Linear Fredholm equation:

\[(I - K)u(x) = u(x) - \int_{0}^{1} k(x, y)u(y) \, dy = f(x),\]

\(f \in X = C[0, 1], \, k \in C([0, 1] \times [0, 1])\)

Approximating space: \(V_h = \text{span} \{\phi_i\}\)

\(P_h\) is a projection onto \(V_h\), and we seek \(u^h \in V_h\).

\[u^h(x) - K_hu^h(x) = u^h(x) - \int_{0}^{1} k_h(x, y)u^h(y) \, dy = P_hf(x)\]

where, \(k_h(x, y) = \sum_{i,j=1}^{N_h} k(x_i, x_j) \phi_i(x) \phi_j(y)\)
Properties of Discretization

• K_h operates on the function space
Properties of Discretization

- K_h operates on the function space
- $K_h \rightarrow K$ in the operator norm
Properties of Discretization

- K_h operates on the function space
- $K_h \to K$ in the operator norm
- Lots of flexibility in P_h
 Strong convergence to I is all you need.
Properties of Discretization

- K_h operates on the function space
- $K_h \rightarrow K$ in the operator norm
- Lots of flexibility in P_h
 Strong convergence to I is all you need.
- If $I - K$ is nonsingular, then

\[u^h = (I - K_h)^{-1} P_h f \rightarrow (I - K)^{-1} f \]

Solve finite dimensional system for nodal values.
Properties of Discretization

- K_h operates on the function space
- $K_h \rightarrow K$ in the operator norm
- Lots of flexibility in P_h
 Strong convergence to I is all you need.
- If $I - K$ is nonsingular, then
 \[u^h = (I - K_h)^{-1}P_h f \rightarrow (I - K)^{-1}f \]

Solve finite dimensional system for nodal values.

- Other choices of K_h are possible
 Standard quadrature rule + fine-to-coarse by averaging
Nystrom interpolation

- Solve $\tilde{u}^h - K_h \tilde{u}^h = f$ rather than $u^h - K_h u^h = P_h f$.
- Multiply by P_h and use $K_h = K_h P_h = P_h K_h$ to get

\[(P_h \tilde{u}) - P_h K_h (P_h \tilde{u}) = P_h f.\]

Finite dimensional system.
Solve for $u^h = P_h \tilde{u}^h$.

- $\tilde{u}^h = f + K_h u^h$
Performance of GMRES

Avoid the $O(N_h^3)$ cost of a direct solver, and compute

$$u^h = (I - K_h)^{-1} P_h f = \sum_{i=1}^{N_h} u_i^h \phi_i \in V_h.$$

with GMRES.

- Continuous problem: superlinear convergence
- Discrete problem: mesh independent performance
- Cost: One $K_h v$ evaluation/linear iteration
 Think $N_h \log N_h$ work if done slickly.

Nested iteration (aka grid sequencing) is a good idea.
Since $K_h \to K$ in the operator norm,

- $(I - K_H) (h << H)$ might be a good preconditioner for GMRES
Multilevel Method; K 95

Since $K_h \rightarrow K$ in the operator norm,

- $(I - K_H) (h << H)$ might be a good preconditioner for GMRES
- Richardson iteration is a better idea thanks to LOW STORAGE.

$$u \leftarrow u - (I - K_H)^{-1} ((I - K_h)u - P_h f)$$
Since $K_h \rightarrow K$ in the operator norm,

- $(I - K_H) (h << H)$ might be a good preconditioner for GMRES
- Richardson iteration is a better idea thanks to LOW STORAGE.

\[u \leftarrow u - (I - K_H)^{-1}((I - K_h)u - P_h f) \]

- H suff small implies
Since $K_h \rightarrow K$ in the operator norm,

- $(I - K_H) (h \ll H)$ might be a good preconditioner for GMRES
- Richardson iteration is a better idea thanks to LOW STORAGE.

$$u \leftarrow u - (I - K_H)^{-1}((I - K_h)u - P_h f)$$

- H suff small implies
 - Krylovs independent of H.
Since $K_h \to K$ in the operator norm,

- $(I - K_H) (h \ll H)$ might be a good preconditioner for GMRES
- Richardson iteration is a better idea thanks to LOW STORAGE.

$$u \leftarrow u - (I - K_H)^{-1}((I - K_h)u - P_hf)$$

- H suff small implies
 - Krylovs independent of H.
 - One iteration/level suffices.
Nonlinear Problems

Generalization to the nonlinear case is easy,

\[u \leftarrow u - (I - \mathcal{H}_H(u^H))^{-1} F_h(u) \]

if you’re careful about the fine-to-coarse transfer. If coarse mesh suff fine,

- Krylov/Newton independent of \(H \)
- one Newton/level suffices.
Nested Iteration: Bottom up; K 95

\[h = H, \ i = 0 \]
Solve \(F_H(u^H) = 0 \) to high accuracy.
\[u \leftarrow u^H \]
\textbf{for} \(i = 1, \ldots m \) \textbf{do}
\[h \leftarrow h/2 \]
\[u \leftarrow u - (I - \mathcal{K}_H^I(u^H))^{-1}F_h(u) \]
\textbf{end for}

- All the linear solver work is on the coarse mesh.
- Only two grids \(H \) and \(h \) active at any time.
- Cost of solve to truncation error:
 \(< 3 \) fine mesh evals, depending on cost of \(\mathcal{K}_h \)
Iteration statistics for three nested iterations

- Multilevel, Newton-GMRES, Picard
- Formulation in c:
 \[c \rightarrow h(c) \] via integral equation
 \[c = \mathcal{K}(c) \] via constraint
- Tabulate:
 \[i^f_G \] = fine mesh GMRES/Newton (average)
 \[i^c_G \] = coarse GMRES/Newton (average)
 incoming nonlinear residual R_h ($R_{2h} \approx 4R_h$)
Iteration Statistics: $h = 1/(N-1)$

<table>
<thead>
<tr>
<th>N</th>
<th>R_δ</th>
<th>i^f_G</th>
<th>R_δ</th>
<th>i^f_G</th>
<th>R_δ</th>
<th>i^c_G</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>3.5900e+00</td>
<td>650</td>
<td>3.5900e+00</td>
<td>85</td>
<td>3.5900e+00</td>
<td>85</td>
</tr>
<tr>
<td>129</td>
<td>1.3696e-01</td>
<td>11</td>
<td>1.3696e-01</td>
<td>4</td>
<td>1.3696e-01</td>
<td>8</td>
</tr>
<tr>
<td>257</td>
<td>2.0031e-02</td>
<td>3</td>
<td>2.9413e-02</td>
<td>5</td>
<td>4.1900e-02</td>
<td>7</td>
</tr>
<tr>
<td>513</td>
<td>4.8144e-03</td>
<td>9</td>
<td>6.9937e-03</td>
<td>5</td>
<td>9.4120e-03</td>
<td>7</td>
</tr>
<tr>
<td>1025</td>
<td>2.3568e-03</td>
<td>14</td>
<td>1.5400e-03</td>
<td>5</td>
<td>2.0205e-03</td>
<td>7</td>
</tr>
<tr>
<td>2049</td>
<td>3.6543e-04</td>
<td>15</td>
<td>3.5596e-04</td>
<td>7</td>
<td>4.6015e-04</td>
<td>8</td>
</tr>
<tr>
<td>4097</td>
<td>8.2396e-05</td>
<td>22</td>
<td>8.4570e-05</td>
<td>5</td>
<td>1.0831e-04</td>
<td>8</td>
</tr>
<tr>
<td>8193</td>
<td>2.2253e-05</td>
<td>38</td>
<td>2.0784e-05</td>
<td>7</td>
<td>2.6411e-05</td>
<td>8</td>
</tr>
<tr>
<td>16385</td>
<td>4.0075e-06</td>
<td>48</td>
<td>5.2729e-06</td>
<td>8</td>
<td>6.5042e-06</td>
<td>8</td>
</tr>
<tr>
<td>32769</td>
<td>9.7738e-07</td>
<td>32</td>
<td>1.2263e-06</td>
<td>5</td>
<td>1.6132e-06</td>
<td>8</td>
</tr>
<tr>
<td>65537</td>
<td>2.3869e-07</td>
<td>44</td>
<td>3.0647e-07</td>
<td>7</td>
<td>4.0169e-07</td>
<td>8</td>
</tr>
</tbody>
</table>
Mission Accomplished?

- We found two solutions;
Mission Accomplished?

- We found two solutions; one was wrong.
Mission Accomplished?

- We found two solutions; one was wrong.
- Monte knew which one was correct.
Mission Accomplished?

- We found two solutions; one was wrong.
- Monte knew which one was correct. Tim did not.
Mission Accomplished?

- We found two solutions; one was wrong.
- Monte knew which one was correct. Tim did not.
- One can get one or the other by
 - varying the initial iterate,
 - varying the initial grid, or
 - varying the details of the algorithm,
Mission Accomplished?

- We found two solutions; one was wrong.
- Monte knew which one was correct. Tim did not.
- One can get one or the other by
 - varying the initial iterate,
 - varying the initial grid, or
 - varying the details of the algorithm,
- which motivates a parametric \((\sigma, \varepsilon, \rho \ldots)\) study of the OZ equations.
Path Following

\[F : X \times [a,b], \text{ } F \text{ smooth, } X \text{ a Banach space.} \]

Objective: Solve \(F(u, \lambda) = 0 \) for \(\lambda \in [a, b] \)

Obvious approach:

Set \(\lambda = a \), solve \(F(u, \lambda) = 0 \) with Newton-(MG, GMRES, \ldots) to obtain \(u_0 = u(\lambda) \).

while \(\lambda < b \) do

Set \(\lambda = \lambda + d\lambda \).

Solve \(F(u, \lambda) = 0 \) with \(u_0 \) as the initial iterate.

\(u_0 \leftarrow u(\lambda) \)

end while

The implicit function theorem says: You will not find two solutions with identical parameter values this way.
What’s the problem?

- Multiple solutions, hysteresis
- No solutions
What’s the problem?

- Multiple solutions, hysteresis
- No solutions

A fix: Pseudo-arclength continuation.
Set \(x = (u, \lambda) \) and solve \(G(x, s) = 0 \), where, for example

\[
G(x, s) = \begin{pmatrix}
F \\
N
\end{pmatrix} = \begin{pmatrix}
F(u(s), \lambda(s)) \\
\dot{u}^T(u - u_0) + \dot{\lambda}^T(\lambda - \lambda_0) - (s - s_0)
\end{pmatrix}.
\]
What’s the problem?

- Multiple solutions, hysteresis
- No solutions

A fix: Pseudo-arclength continuation.
Set $x = (u, \lambda)$ and solve $G(x, s) = 0$, where, for example

$$G(x, s) = \begin{pmatrix} F \\ N \end{pmatrix} = \begin{pmatrix} F(u(s), \lambda(s)) \\ \dot{u}^T (u - u_0) + \dot{\lambda}^T (\lambda - \lambda_0) - (s - s_0) \end{pmatrix}.$$

s is an artificial “arclength” parameter. u_0 and λ_0 are from the previous step. $\dot{u} \approx du/ds$ and $\dot{\lambda} \approx d\lambda/ds$,

(say by differences using s_0 and s_{-1}).
Simple Folds

We follow solution paths \(\{x(s)\} \).
Assume that \(F \) is smooth and

- \(G_x \) is nonsingular (not always true)
 So implicit function theorem holds in \(s \).

We are assuming that there is no true bifurcation and that the singularity in \(\lambda \) is at worst simple fold.

\[
\dim(\text{Null}(F_u)) = 1, \quad F_\lambda \neq \text{Ran}(F_u)
\]
Set $\lambda = a$, $s = 0$ solve $F(u, \lambda) = 0$ with
Newton-(MG, GMRES, ...) to obtain u_0.

Estimate $ds, \dot{u}, \dot{\lambda}$.

while $s < s_{max}$ do

$s \leftarrow s + ds$.

Solve $G(x, s) = 0$ with u_0 as the initial iterate.

$x_0 \leftarrow x$

Update $ds, \dot{u}, \dot{\lambda}$.

end while
How should compactness help?

- Newton-Krylov solvers: Ferng-K(00), K, Kevrekidis, Qiao (04)
How should compactness help?

- Newton-Krylov solvers: Ferng-K(00), K, Kevrekidis, Qiao (04)
 - Mesh-independent performance for compact ranges of \(s \),
How should compactness help?

- Newton-Krylov solvers: Ferng-K(00), K, Kevrekidis, Qiao (04)
 - Mesh-independent performance for compact ranges of s,
 - Preconditioning easy or unnecessary(?).
How should compactness help?

- Newton-Krylov solvers: Ferng-K(00), K, Kevrekidis, Qiao (04)
 - Mesh-independent performance for compact ranges of s,
 - Preconditioning easy or unnecessary(?)
- Multilevel solvers
How should compactness help?

- Newton-Krylov solvers: Ferng-K(00), K, Kevrekidis, Qiao (04)
 - Mesh-independent performance for compact ranges of s,
 - Preconditioning easy or unnecessary(?).
- Multilevel solvers
 - Easy to build. Compactness smooths for you.
How should compactness help?

- Newton-Krylov solvers: Ferng-K(00), K, Kevrekidis, Qiao (04)
 - Mesh-independent performance for compact ranges of s,
 - Preconditioning easy or unnecessary(?)
- Multilevel solvers
 - Easy to build. Compactness smooths for you.
 - Appropriate coarse grid data depend on s.
Multilevel Approach

Pathfollowing on coarse mesh + nested iteration fails.

- \(F(u, \lambda) = u - \mathcal{K}(u, \lambda) \)
- \(\lambda(s) \) is sensitive to the mesh.
- Track path on fine mesh.
- Use coarse mesh problem to approximate \(\mathcal{K}u \)
 Apply GMRES to new problem.
Coarse mesh problem construction

For continuation in λ

- $x^h = x^h + dx$, Euler predictor on fine mesh.
- $u^H = I_h^H(u^h)$, $\lambda = \lambda^H = \lambda^h$.
- Build $K_H = I_H^H \mathcal{K}_u^H(u^H, \lambda) I_h^H$
- Norm convergent (K, 1995) if I_h^H is done right degenerate kernel approximation
- Approximate Newton step by solving

 $$s - K_H s = -F_h(u^H, \lambda).$$

 Fine mesh residual and coarse mesh solve.
Continuation in s

Approximate G_x by

$$G_{u,\lambda}^H(u, \lambda) \equiv
\begin{pmatrix}
I - \partial \mathcal{K}^H(I_h^H u, \lambda)/\partial u & -\partial \mathcal{K}^H(I_h^H u, \lambda)/\partial \lambda \\
(I_h^H \dot{u})^T & \dot{\lambda}
\end{pmatrix}.$$

and apply GMRES.
Continuation in s

Approximate G_x by

\[G^H, h_{u, \lambda} (u, \lambda) \equiv \begin{pmatrix}
I - \partial \mathcal{K}^H (I_h^H u, \lambda) / \partial u
& - \partial \mathcal{K}^H (I_h^H u, \lambda) / \partial \lambda \\
(I_h^H \dot{u})^T
& \dot{\lambda}
\end{pmatrix}. \]

and apply GMRES.

- Operator-function product is now on coarse mesh.
- Works for “black-box” functions. Flexible choice of \mathcal{K}^H.
- Theory follows from older work, if you coarsen only in \mathcal{K}, not in G.
Details

- F and N may require scaling to make Newton terminate properly.
Details

• F and N may require scaling to make Newton terminate properly
• ds must be controlled by watching for
Details

- F and N may require scaling to make Newton terminate properly.
- ds must be controlled by watching for deviation of Newton’s/(step in s) from target.
Details

- F and N may require scaling to make Newton terminate properly
- ds must be controlled by watching for
 - deviation of Newton’s/step in s) from target
 - curvature estimation
Details

- \(F \) and \(N \) may require scaling to make Newton terminate properly

- \(ds \) must be controlled by watching for
 - deviation of Newton’s/ (step in s) from target
 - curvature estimation
 - true bifurcation
Details

- F and N may require scaling to make Newton terminate properly
- ds must be controlled by watching for
 - deviation of Newton’s/(step in s) from target
 - curvature estimation
 - true bifurcation
- occasional testing for bifurcation
Numerical Results: Three Solution Paths

For each solution we continue in ρ, and plot three scalars:

- Excess number
 \[\int r^2 h(r) \, dr \]
- Pressure
 \[\int r^3 U'(r)(h(r) + 1) \, dr \]
- Compressibility
 \[\int r^2 c(r) \, dr \]

as functions of ρ.
Path through physical solution

Diagram showing the relationship between pressure, compressibility, and excess number.
Path through non-physical solution
Conclusions

- OZ integro-algebraic equations
 Elimination leads to compact fixed point problem
- Multilevel method for integral equations
- Solves OZ, but finds too many solutions
- Bottom-up nesting goes the wrong way for continuation
- Top down works; currently 30% faster than GMRES