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Abstract

A multilevel wavelet algorithm is developed to solve integral equations for the pair correlations

in simple liquids. The algorithm is based on the discrete wavelet transform of the radial correlation

functions. The fundamental properties of wavelet bases are employed to improve the convergence

and speed of the algorithm. The Coifman 2 basis set is used for the wavelet treatment. To solve

the Ornstein-Zernike integral equations we have applied a combined scheme in which the coarse

part of the solution is calculated with the use of wavelets by a multilevel method, and the fine part

by Picard iteration. We report on numerical experiments which show that the proposed procedure

is more effective than one in which the coarse grid solution is computed by a single-level iteration.
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I. INTRODUCTION

Integral equation (IE) theories using the Ornstein-Zernike equation and its variants have

proven to be a successful tool for treating simple liquids.[1] The IE method consists in

calculating of the radial distribution function (RDF) by solving the set of equations formed

by the Ornstein-Zernike (OZ) integral equation and a closure relation. The OZ equation

relates the total pair correlation function h(r) with the direct correlation function c(r), for

an isotropic liquid with density ρ. The OZ equation is a convolution integral equation given

by:

h(r) = c(r) + ρ

∫
c(|r− r′|)h(r′)dr′. (1)

The closure relation couples the same quantities, h and c, and the interaction potential

U(r). Formally this relation may be written in terms of the indirect correlation function

γ(r) = h(r) − c(r) as

c(r) = exp[−βU(r) + γ(r) +B(γ)] − γ(r) − 1, (2)

where β = (kBT )−1 is the inverse of the temperature, T and the Boltzmann constant,

kB. The closure introduces the bridge function B[γ] which is a nontrivial functional of γ.[1]

Given U(r), T , ρ, and an approximate B[γ] the IE method consists in finding a solution

to set (1)-(2). By solving the set all the required correlation functions and, hence, all

the thermodynamic and structural properties of fluid may be obtained. Since the exact

expression for B[γ] is computationally intractable, approximation to the bridge function is

a central aspect of contemporary IE theories. The list of such approximating closures is still

expanding and includes, for example, B[γ] = 0 for the hypernetted chain (HNC) closure,

B[γ] = ln(1 + γ(r)) − γ(r) in the Percus-Yevick approximation, etc. These approximations

have been studied extensively for simple liquids, and their failure and advantages are well

documented in literature.[1]

Although there are a few special cases when the integral equations can be solved an-

alytically, numerical solutions of (1)-(2) are required for physically realistic choices of the

potential, U . For numerical calculations the Fourier representation of the OZ equation
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between c and γ is often useful:

γ̂(k) =
ρĉ2(k)

1 − ρĉ(k)
, (3)

where f̂ denotes the three-dimensional (3D) Fourier transform (FT) of f . In the radially

symmetric case considered in this paper, the FT reduces to to the one-dimensional (1D)

spherical-Bessel transform f̂(k) = 4π/k
∫

∞

0
r sin(kr)f(r)dr. The inverse Fourier transform

(FT)−1 can be obtained in a similar manner.

The conventional method is based on the Picard scheme and given an initial guess to the

usually nonlinear IE uses direct iteration.[3, 17] Unfortunately several hundred iterations

may be needed even for a rather accurate initial approximation of γ(r). The Newton-

Raphson (NR) algorithm [2] appears to be much more efficient, but when implemented in

a naive way, requires calculation of the Jacobian matrix and the solution of the linearized

problem.[3]

The conventional numerical schemes for solving IE suggest the solution to be divided

into the “coarse” and “fine” parts and the algorithm to be a hybrid of the Newton-Raphson

and Picard schemes for the coarse and fine parts, respectively.[3] The former being obtained

as an expansion in the basis of roof functions [3] or plane waves [4]. Because this method

does not directly address the computation or storage problems, special efforts are required

to approximate and store the full Jacobian matrix to achieve a reasonable algorithm.

Another approach is to use a matrix-free iterative procedure, such as a Newton-Krylov

or Newton-multigrid method [5, 6]. Here we employ a wavelet-based approach. To combine

a Newton-multigrid method with wavelets would require additional algorithms (see, for

example [7]), to use such an approach. Therefore, in this paper we will restrict ourselves only

to an NR iteration with full coarse-grid matrix storage, and concentrate on the advantages

of a special choice of basis set for the coarse solution, namely, wavelets. The results of

the coupling of matrix-free solvers and a wavelet approximation will be a topic of future

research.
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II. NUMERICAL SCHEME BASED ON WAVELETS

A. Wavelet representation of the OZ equation

Wavelet analysis is a modern numerical tool that is an extension of Fourier analysis.

There are many examples of wavelet techniques and their applications [8–12]. We restrict

our consideration to the orthonormal and compactly supported wavelets. Details of wavelet

applications to IE’s are described in [13, 14]. Wavelets are functions which form an or-

thonormal basis for L2(R). Unlike the harmonic functions wavelets have dual localization

characteristics in both the real and reciprocal spaces. Any square-integrable function f(r)

can be expanded as a sum of linear combinations of scaling functions at the chosen resolution

j = j0 and wavelet functions at all finer resolutions j ≥ j0:

f(r) =
∑

s

aj0sϕj0s(r) +
∞∑

j0

∑

s

djsψjs(r), (4)

where the coefficients {aj0s} and {djs} are obtained by the inner product with appropriate

basis functions:

aj0s =

∫
f(r)ϕj0s(r)dr; djs =

∫
f(r)ψjs(r)dr. (5)

Equation (4) is considered to be a discrete wavelet transform (DWT). In expansion of (4) the

first term gives a “coarse” approximation of f(r) at the resolution j0 and the second term

gives a sequence of refinements (details). In practice the details are cut off at the appropriate

resolution desired jmax. This means that we have a finite number of decomposition levels

L ≡ jmax − j0. We also truncate r to a finite interval by limiting the upper limit of the

sequence of translates {si} to a finite value S.

It should be mentioned that the number of terms can be different for the coarse and fine

parts. Applying the algorithm of fast wavelet transform (FWT) to calculate the approxi-

mating coefficients [8], we can avoid the direct integration in (5). The elegant pyramidal

procedure provides a low computational cost for such calculations.

To apply the wavelet technique to IE’s we employ the wavelet representation of the OZ

equation [14]. We briefly review the approach from [14] below.
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We begin by decomposing the correlation functions into coarse and fine parts:

c(r) = cc(r) + cf (r), γ(r) = γc(r) + γf(r). (6)

Then, we express the coarse parts of the direct and indirect correlation functions in terms

of the chosen wavelet scaling functions with the appropriate number of resolution levels L

as:

γc(r) =
∑

s

GLsϕLs(r), cc(r) =
∑

s′

CLs′ϕLs′(r). (7)

We denote the set of approximating coefficients {GLs}, and {CLs′}, as the vectors–

columns GL, and CL respectively. In general the relevant coefficients are found by the

inner product of c(r) or γ(r) with the scaling functions {ϕ} similar to (5). We use a FWT

to find them in this work.

We introduce the convolution matrices WL whose elements are given as:

WL(s, s′, m) =

∫
ϕLm(r)dr

∫
ϕLs(|r− r′|)ϕLs′(r

′)dr′. (8)

We can see that each one-dimensional subset WL(s, s′, :) is the set of the scaling functions

coefficients of the wavelet transform (5) for the convolution product Dss′

L :

Dss′

L =

∫
ϕLs(|r− r′|)ϕLs′(r

′)dr′. (9)

We define a matrix AL and a column–vector BL whose elements are defined as:

AL(:, m) = CL

T ·WL(:, :, m), BL(m) =
∑

k,l

[CL · CL

T ] �WL(:, :, m), (10)

where the upper index T denotes the transposition, symbol ” · ” denotes the matrix

product, ” � ” denotes the dot product of two matrixes and ” : ” means a subset of a

matrix in one dimension. In Eq. (8) the convolution matrix WL depends only on the

choice of the wavelet basis set and chosen number of decomposition levels and has to be

evaluated only once before the calculation of the correlation functions and then stored in

the computer memory. One might think that the cost of computing WL is large enough to

make this approach impractical. However, this cost is only incurred on the coarse mesh, can

be amortized over many computations, and, using properties of the wavelet basis, WL can

be well approximated by an extremely sparse matrix which can itself be computed using the

nodal values of Dss′

L (see § II B).
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Making the wavelet transform of the left and the right parts of the (1) and taking into

account the wavelet orthogonality, we obtain the wavelet representation of the OZ equation

for the coarse parts of the chosen level L:

GL = ρ [I − ρ · A]−1 ·B, (11)

where I is the unity matrix, while [I − ρA]−1 is the matrix inverse to [I − ρA]−1. Using

the inverse FWT we can reconstruct γc(r) from the set of coefficients GL. As the fine parts

of the correlation functions are assumed to be zero for the initial step we restrict (2) to the

coarse level and obtain

cc(r) = exp[−βU(r) + γc(r) + B[γc]] − γc − 1. (12)

Using FWT we perform the wavelet transform of cc(r) to obtain the set of CL and use it

as a next input for (11).

Thus, our numerical scheme proposes the following cycle for obtaining the coarse solution:

GL

in → (FWT )−1 → γc(r) → (12) → (cc) → (FWT ) → CL → (11) → GL

out, (13)

If the number of wavelet coefficients is not relatively large, the solution of (11) with

direct and back FWT requires less computation than the direct and the back FFT at each

iteration.

When the required accuracy is achieved we start the second loop for calculating the fine

part γf(r). For this purpose we consider the coarse part γc(r) as an initial approximation for

γ(r) at the second loop. Then starting from this approximation we perform the calculations

by direct iterations:

γin(r) → (2) → c(r) → (FFT ) → ĉ(k) → (1) → γ̂(k) → (FFT )−1 → γout(r). (14)

If the coarse solution is rather closed to the true one the number of direct iterations is

not so large and does not usually exceed 20-30. The efficiency of the method depends on

the number of approximating coefficients. Due to the special choice of the wavelet basis this

number can be rather small, providing rapid convergence.

As was previously shown[13, 14] this method allows us to solve integral equations for

simple and molecular liquids with less computational effort than the conventional methods
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of integral equations theory. But as we will show in the next section the speed and the

convergence of this method can be strongly improved using the fundamental properties of

wavelets and radial correlation functions in a multilevel scheme.

B. Multilevel approach to finding the coarse solution

Although the scheme described above is significantly faster than conventional methods,

we still have to pay for direct and back FWT transform which costs about O(N) for each

cycle, where N is the size of the coarse grid.

Fortunately we have a route to avoid these operations. Note that functions γ(r) and c(r)

are quite smooth in most of practical cases (i.e. non hard sphere potentials etc). Thus, these

functions have at least second derivative in the segment ]0,∞]. In this case we can employ

the fact that for several wavelet families such as Coifman and Hyperbolic wavelets [16] the

coefficients of the wavelet expansion of a function f(x) can be estimated directly from the

values of the function itself. The estimation error depends mainly on the basis set and

number of derivatives [9, 10, 15]. In fact, we can also estimate the values of reconstructed

function at the nodes directly from the wavelet coefficients. In our case it means that we

can estimate the values of CL using the relationship (12) as:

CLs ≈ exp(−βU(sdL) +KGLs +B(KGLs)/K −GLs − 1/K, (15)

where the dL is a distance between nodes at the level L and K is a constant. These

values depend only on a particular implementation of the FWT algorithm. In our case the

dL = d2L where d is the size of grid in the finest level of resolution. The constant K is

equal to 2−L/2. So we can avoid the direct and back FWT in the cycle (13) and simplify our

scheme.

GL

in → (15) → (CL) → (11) → GL

out, (16)

We also use this approach for the calculations of the matrix WL. As was mentioned

above, each column WL(k, l, :) of the matrix WL is just the set of approximation coefficients

of the wavelet transform applied to the convolution product Dss′

L (9) of the two scaling

functions ϕLs and ϕLs′. Thus similar to (15) we can employ the following approximation:

WL(s, s′, m) ≈ Dss′

L (mdL)/K. (17)
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This significantly reduces the cost of computing WL because we avoid S × S ′ number of

FWT operations (S and S ′ are the numbers of coefficients for the coarse parts of correlation

functions (7)).

To improve the convergence of this method we use a nested iteration, which is part of the

multilevel strategy [17]. The main idea is that instead of the one number of decomposition

levels L we choose the set of consecutively decreasing numbers {Ln} : L1 > L2 > · · · >

Ln > · · · > LN ≥ 0. The zero value of L would correspond to the finest level of resolution

(finest grid). The coarse solution obtained with the number of levels Ln serves as input for

the next more accurate solution with Ln+1 which serves as input for the next number Ln+2

etc.

C. Details of calculations

To illustrate our scheme we have investigated an isotropic Lennard-Jones fluid with the

interaction potential U(r) given by U(r) = 4ε[(σ/r)12 − (σ/r)6], where σ and ε are the

size and energy parameters, respectively. The coarse approximations were found iteratively

by (16) with three consequent resolution levels [L1 = 6, L2 = 4, L3 = 2]. For each L the

coarse solution was found until the required accuracy was achieved. For L1 we used 20

wavelet coefficients for both sets G1 and C1. For L2 and L3 we used 50 and 100 coefficients

respectively. The precision parameter for the numerical solution was equal to 10−4.

To generate wavelets we used a grid with the number of points n = 2048 and step size

δr = σ/120. For the first number L1 we used the Newton–Raphson algorithm to improve

convergence. For the numbers L2 and L3 we used a simple Picard scheme as the convergence

was quite good. Jacobian matrices were calculated only on the coarse mesh.

It should be also mentioned that only 5−7 Newton iterations were needed in this case to

reach a good level of precision (see Fig. 1). We can see from that picture that to achieve a

level of precision of about 10−10 −−10−11 we need only 7 iterations. The number of Picard

iterations were increased almost by twice (from 38 to 72) when we decreased the termination

parameter from 10−4 to 10−6. Then the dependence of the number of iterations needed for

convergence is linear in log-normal coordinates. So we pay about 18− 19 iterations for each

next order of precision.

Concerning the choice of the wavelet basis set, we note that there are several common
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sets such as Coifman, Hyperbolic, etc [10, 16] which can be used to realize the described

scheme. We have used the Coifman (C2) set. The main feature of the Coifman basis is

that the scaling function ϕ(r) has the maximum number of vanishing moments at the fixed

support. The larger the ratio of vanishing moments to the length of support, the better is

the approximation of the first peak for the studied RDF [10].

Hence, using the C2 wavelets we can accurately treat an RDF with relatively sharp peaks.

On the other hand, the C2 wavelets are rather smooth and well approximate the RDF within

the ranges between these peaks. In addition this bases set had been already tested in the

different applications involving IE’s. [13, 14, 18].

The evaluation of the convolution product (9) can be easily performed in the case of radial

wavelets, where the convolution can be evaluated via one-dimensional Fourier transforms (3)

of the relative scaling functions. Moreover, the most of the coefficients (8) are nullified due to

symmetry of the convolution and the compressive properties of FWT’s for integral operators.

According to [15], we can ignore all the coefficients which which are less than a constant

M . We choose M = 10−5 and found that it provides accurate calculations of correlation

functions. For all the densities we start from the wavelet coefficients equal to zero at the

coarsest level L1.

In addition we should mention that WL depends only on the basis set and resolution

level. Therefore we do not need to calculate WL in each cycle (and in each run of program

as well), rather we evaluate the matrix WL only once and then save it as a file.

In general it is possible to create a data-base of these matrices. That is why we regard

them as tabular data and do not take into account their calculation expenses.

III. RESULTS AND DISCUSSION

Using the IE method based on discrete wavelets we have solved the OZ integral equations

for simple fluids. Only the HNC closure has been considered here but the results should

hold for other related closures. The solution was obtained in a wide range of size and

energy parameters forf the fluid. To reveal the effectiveness of our algorithm we compare

the CPU time required for the calculations by the wavelets and the conventional IE method

at the same level of precision. Regarding the wavelet technique we used these two methods

described above. The first one (W1) is based on the cycle ( 13) with forward and back
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FWT’s and a single value of L = 4. The second one (W2) is based on the cycle (16) with

parameters described in the previous section. Fig. 2 depicts the CPU time required to obtain

the solution at various values of the dimensionless parameter βε.

As is seen, the difference in computational costs for both the wavelets methods is small

at low values of βε corresponding to high temperatures, but the effectiveness of the W2

algorithm strongly increases as temperature decreases. This is due to that fact that this

scheme is not sensitive to initial data and hence to the step δ(βε) even at high values of βε.

Apart from this, the FWT-based W1 and the conventional one demand the results obtained

at the nearest low value of βε as the initial guess. Thus the computational expenses rise

quite rapidly for the both methods. It should be mentioned that at low temperatures the

conventional IE scheme requires a more accurate initial estimate leading to decreased step

δ(βε). As a result, the computational expense of the wavelet scheme W1 is intermediate

between the conventional Picard and the W2 schemes. A similar situation takes place also

at high values of liquid density ρ.
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FIG. 1: The dependence of scaled l-square norm l2 of discrepancy with regard to the number of

NR iterations with the coarse mesh. The parameters of OZ equation are: βε = 1, ρσ3 = 0.6. The

l2 is in log scale.
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FIG. 2: CPU time (sec) required to obtained the solution by the wavelets methods W1 (circles,

dashed line), W2 (rectangles, solid line) and by the conventional method (triangles, dash-dotted

line) with versus parameter βε at ρσ3 = 0.6. The CPU time is in log scale.
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