Criteria for Divisibility by Small Primes
Richard Chandler

Our context will be the set \(\mathbb{Z} \) of integers and, more particularly, the set of positive integers \(\mathbb{N} \ aka \) the set \{1, 2, 3, \ldots \}. One of the basic tools for working with integers is the Division Algorithm:

Theorem. For any integer \(n \) and any natural number \(d \) there are unique integers \(q \) and \(r \), with \(0 \leq r < d \), so that \(n = q \cdot d + r. \)

Generally, \(d \) is referred to as the divisor, \(q \) the quotient, and \(r \) the remainder. If \(r = 0 \), so that \(n = q \cdot d \), we say that \(d \) divides \(n \). We write this in mathematical shorthand as \(d \mid n \). For example, \(2 \mid 6 \) since \(6 = 3 \cdot 2 \), \(3 \mid 111 \) since \(111 = 37 \cdot 3 \), and \(5 \nmid 36 \) (5 does not divide 36) since \(36 = 7 \cdot 5 + 1 \). In this case the unique remainder guaranteed by the Division Algorithm is 1, not 0.

Easy Theorems:
- If \(d \) divides any two of \(a \), \(b \), and \(a \pm b \), then \(d \) divides the third.
- If \(d \mid k \cdot a \) and \(d \) and \(k \) have no common factor (other than 1), then \(d \mid a \).

Major Definition: A natural number \(p > 1 \) is prime if \(a \mid p \) implies \(a = 1 \) or \(a = p \).

Mathematical notation is sometimes ambiguous. For example, if \(a \) and \(b \) are digits (integers between 0 and 9), what does \(ab \) mean? We frequently use it to mean \(a \) times \(b \) but it can also mean the concatenation of \(a \) and \(b \), i.e., our standard notation for the number 10\(a+b\). In the following we will (hopefully, consistently) use \(ab \) to denote the concatenation of \(a \) and \(b \); the product will be denoted \(a \cdot b \). Thus \(abcd \) is shorthand for \(a \cdot 10^3 + b \cdot 10^2 + c \cdot 10^1 + d \cdot 10^0 \).

Here are some easy tests to determine if a number \(n = abcd \) is divisible by the prime numbers 2, 3, 5, 7, or 11. These tests work for any numbers; we use 4 digit numbers simply for the relative ease of exposition. A couple of these (2 and 5) you have known all your life:

Divisibility by 2. \(2 \mid abcd \iff 2 \mid d, \ i.e., \iff d \) is even.

Why?
\[
d = abcd - abc0 = abcd - 10 \cdot abc \text{ so } 2 \notmid abcd \iff 2 \notmid d. \quad \blacksquare
\]

Divisibility by 3. \(3 \mid abcd \iff 3 \mid (a + b + c + d) \).

Why?
Remember that \(abcd \) is shorthand for \(a \cdot 10^3 + b \cdot 10^2 + c \cdot 10^1 + d \). So
\[
a + b + c + d = a \cdot (10 - 9)^3 + b \cdot (10 - 9)^2 + c \cdot (10 - 9)^1 + d
\]
\[
= a \cdot 10^3 - 3 \cdot a \cdot 10^2 \cdot 9^1 + 3 \cdot a \cdot 10^1 \cdot 9^2 - a \cdot 9^3
\]
\[
+ b \cdot 10^2 - 2 \cdot b \cdot 10^1 \cdot 9^1 + b \cdot 9^2
\]
\[
+ c \cdot 10^1 - c \cdot 9^1
\]
\[
+ d
\]
\[
= a \cdot 10^3 + b \cdot 10^2 + c \cdot 10^1 + d + 9 \cdot (MESS)
\]
\[
= abcd + 9 \cdot (MESS)
\]

So we see that \(3 \mid abcd \iff 3 \mid (a + b + c + d). \quad \blacksquare
\]

Corollary: Divisibility by 9. \(9 \mid abcd \iff 9 \mid (a + b + c + d). \quad \blacksquare
\]

Divisibility by 5. \(5 \mid abcd \iff 5 \mid d, \ i.e., \iff d = 0 \) or \(d = 5 \).

Why?
\[
d = abcd - abc0 = abcd - 10 \cdot abc \text{ so } 5 \notmid abcd \iff 5 \notmid d. \quad \blacksquare
\]

Divisibility by 7. \(7 \mid abcd \iff 7 \mid (abc - 2 \cdot d) \).

Why?
\[
10 \cdot (abc - 2 \cdot d) = abcd0 - 20 \cdot d
\]
\[
= abcd0 + d - 21 \cdot d
\]
\[
= abcd - 21 \cdot d
\]

So we see that \(7 \mid abcd \iff 7 \mid (abc - 2 \cdot d). \quad \blacksquare
\]
Divisibility by 11. $11 | abcd \iff 11 | (a - b + c - d)$.

Why?
This argument is very similar to that for divisibility by 3:

\[a - b + c - d = -(a \cdot (10 - 11)^3 + b \cdot (10 - 11)^2 + c \cdot (10 - 11)^1 + d) \]
\[= -(a \cdot 10^3 - 3 \cdot a \cdot 10^2 \cdot 11^1 + 3 \cdot a \cdot 10^1 \cdot 11^2 - a \cdot 11^3) \]
\[- (b \cdot 10^2 - 2 \cdot b \cdot 10^1 \cdot 11^1 + b \cdot 11^2) \]
\[- (c \cdot 10^1 - c \cdot 11^1) \]
\[- d \]
\[= -(a \cdot 10^3 + b \cdot 10^2 + c \cdot 10^1 + d) + 11 \cdot (MESS) \]
\[= -abcd + 11 \cdot (MESS) \]

So we see that $11 | abcd \iff 11 | (a - b + c - d)$. □

Corollary: $11 | abba, 11 | abccba, \text{ etc.} \, (\text{palindromic numbers with an even number of digits}).$

The elegant technique of determining divisibility by 7 is due to Stuart Savory and can be found at http://home.egge.net/.savory/maths1.htm. His very clever method can provide other prime divisibility tests. Here’s how it would work for $p = 13$.

Find the smallest multiple of 13 ending in 9 or in 1. In this case $3 \cdot 13 = 39$, so we are in the “9 case”. The multiplier will then be 4 (the leading digit of $39 + 1$) and we add instead of subtract: $13 | abcd \iff 13 | (abc + 4 \cdot d)$.

Here’s why:

\[10 \cdot (abc + 4 \cdot d) = abc0 + 40 \cdot d \]
\[= abc0 + d + 39 \cdot d \]
\[= abcd + 39 \cdot d \]

So we see that $13 | abcd \iff 13 | (abc + 4 \cdot d)$. □

Can you see why $17 | abcd \iff 17 | (abc - 5 \cdot d)$ and $19 | abcd \iff 19 | (abc + 2 \cdot d)$?

The technique will not work for 2 or 5 (WHY??) and it produces somewhat different looking (but basically the same) tests for 3 and 11 than the ones above:

- $3 | abcd \iff 3 | (abc + d)$
- $11 | abcd \iff 11 | (abc - d)$

Note. Savory’s tests are meant to be used recursively, that is, over and over on a sequence of smaller and smaller numbers until the final divisibility question is obvious. For example,

\[7 | 8911 \iff 7 | (891 - 2 \cdot 1) \iff 7 | 889 \iff 7 | (88 - 2 \cdot 9) \iff 7 | 70. \, \text{So} \, 7 | 8911. \, \text{(}8911 = 7 \cdot 1273).