ABSTRACT: Let \((W, S)\) be a finite Coxeter system, and let \(\theta\) be an involution that fixes a basis for the root system associated with \(W\). We show that the set of \(\theta\)-twisted involutions in \(W\), \(I_{\theta} = \{w \in W \mid \theta(w) = w^{-1}\}\), is in one to one correspondence with the set \(I_{id}\) of regular involutions in \(W\). The elements of \(I_{\theta}\) are characterized by sequences in \(S\) which induce an ordering called the Bruhat order. In particular, for irreducible root systems, the ascending Bruhat order of \(I_{\theta}\) for nontrivial \(\theta\) is identical to the descending Bruhat order of \(I_{id}\).